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Abstract. This paper introduces a uniform substitution calculus for
dLCHP, the dynamic logic of communicating hybrid programs. Uniform
substitution enables parsimonious prover kernels by using axioms instead
of axiom schemata. Instantiations can be recovered from a single proof
rule responsible for soundness-critical instantiation checks rather than
being spread across axiom schemata in side conditions. Even though
communication and parallelism reasoning are notorious for necessitating
subtle soundness-critical side conditions, uniform substitution when gen-
eralized to dLCHP manages to limit and isolate their conceptual overhead.
Since uniform substitution has proven to simplify the implementation
of hybrid systems provers substantially, uniform substitution for dLCHP

paves the way for a parsimonious implementation of theorem provers for
hybrid systems with communication and parallelism.
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1 Introduction

[α]φ [β]ψ
(⋆⋆)

[α ∥ β](φ ∧ ψ)

Fig. 1: The proof rule is
only sound under subtle
side conditions (⋆⋆).

Hybrid systems and parallel systems are notoriously
subtle to analyze. Combining both not only culmi-
nates these subtleties but is further complicated be-
cause parallel hybrid systems are interlocked by syn-
chronization in a shared global time. The dynamic
logic of communicating hybrid programs dLCHP [6]
tames the complexity of parallel hybrid systems pro-
viding a compositional proof calculus that disentangles reasoning into purely dis-
crete, continuous, and communication pieces. However, the calculus is subject to
schematic side conditions whose implementation is generally error-prone causing
large soundness-critical code bases [29]. In particular, compositional reasoning
about parallelism as in the idealized proof rule in Fig. 1 holds the challenge to
exhaustively characterize all side conditions required to make all instances of
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this proof rule sound. Proof systems for discrete parallelism [1, 18, 26, 35, 44, 46]
already have complicated side conditions, but complexity only increases with
continuous interactions in shared global time.

In order to compositionally support compositional reasoning for parallel hy-
brid systems, this paper generalizes Church’s uniform substitution [7] and de-
velops a uniform substitution calculus [29–31] for dLCHP. Uniform substitution
modularizes the calculus itself enabling its parsimonious implementation. Al-
though applicable to discrete parallelism, the dLCHP development resolves the
inherent challenge that parallel hybrid systems always synchronize in time.

Uniform substitution adopts a finite list of concrete formulas as axioms in-
stead of an infinite set of formulas via axiom schemata with side conditions.
This enables theorem provers without the extensive algorithmic checks other-
wise required for each schema to sort out unsound instances. Thanks to the
proof rule US for uniform substitution, only sound instances derive from the
axioms such that the parallel composition rule in dLCHP could be adopted al-
most literally as above, but with all the soundness-critical checking encapsulated
solely in rule US. Thanks to US’s checking, parallel systems reasoning even re-
duces to a single parallel injection axiom [α]ψ → [α ∥ β]ψ that merely describes
the preservation of property ψ of one parallel component α in the parallel sys-
tem α ∥ β. Proofs about α ∥ β reduce to a sequence of property embeddings
with this axiom from local abstractions of the subcomponents, which combine
soundly due to US.

Soundness checks in uniform substitution are ultimately determined by the
binding structures as identified in the static semantics. The development of uni-
form substitution for dLCHP is, therefore, grounded in the following key obser-
vation: Communication and parallelism both cause additional binding structure
that needs attention in the substitution process performed by rule US:

(B I) Expressions depend on communication along (co)finite channel sets (be-
sides finitely many free variables), which, by the core substitution principle [7],
must not be introduced free into contexts where they are written.

(B II) Subprograms in a parallel context need to be restricted in the variables
and channels written as compositional proof rules for parallelism require local
abstractions of subprograms not depending on the internals of the context [35].

Grounded in the need for abstraction (B II), [α]ψ → [α ∥ β]ψ can only be
adopted as a sound axiom schema if α and β do not share state, and if program β
does not interfere with the contract ψ, i.e., (i) ψ has no free variables bound by β
(with exceptions), and (ii) ψ does not depend on communication channels written
by β (except for channels joint with α). This extensive side condition would need
nontrivial soundness-critical implementations of dLCHP axiom schemata. Still,
uniform substitution can be lifted with only small changes locally checking for
clashes with written channels, and prohibited variables or channels.

The modularity of uniform substitution is the key to the parsimonious imple-
mentation [22] of the theorem prover KeYmaera X [10] for differential dynamic
logic dL and differential game logic dGL [28], thus paving the way for a straight-
forward theorem prover implementation of dLCHP. Since dLCHP conservatively
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generalizes dL [6], its uniform substitution calculus inherits the complete [32]
axiomatic treatment of differential equation invariants [29].

2 Dynamic Logic of Communicating Hybrid Programs

This section briefly recaps dLCHP [6], the dynamic logic of communicating hybrid
programs (CHPs). It combines hybrid programs [27] with CSP-style communica-
tion and parallelism [14]. By assumption-commitment (ac) reasoning [21,46,47],
dLCHP allows compositional verification of parallelism in dL. For uniform substi-
tution, function and predicate symbols, and program constants are added.

2.1 Syntax

The set of variables V = VR∪VN∪VT has real (VR), integer (VN), and trace (VT )
variables. For each x ∈ VR, the differential symbol x′ is in VR, too. The designated
variable µ ∈ VR represents the shared global time. The set of channel names
is Ω. By convention x, y ∈ VR, n ∈ VN, h ∈ VT , ch ∈ Ω, and z ∈ V . Channel set
Y ⊆ Ω is (co)finite. Vectorial expressions are denoted ē. Moreover, fM, gM are
M-valued function symbols and p, q, r are predicate symbols, where argument
sorts are annotated by : M1, . . . ,Mk. Finally, a, b are program constants.

Definition 1 (Terms). Terms consist of real (TrmR), integer (TrmN), channel
(TrmΩ), and trace (TrmT ) terms, and are defined by the grammar below, where
θ, θ1, θ2 ∈ Q[VR] ⊂ TrmR are polynomials in VR:

TrmR : η1, η2 ::= x | fR(Y, ē) | η1 + η2 | η1 · η2 | (θ)′ | val(te) | time(te)
TrmN : ie1, ie2 ::= n | fN(Y, ē) | ie1 + ie2 | |te|
TrmΩ : ce1, ce2 ::= fΩ(Y, ē) | chan(te)
TrmT : te1, te2 ::= h | fT (Y, ē) | ⟨ch, θ1, θ2⟩ | te1 · te2 | te ↓ Y | te[ie]

Real terms are polynomials in VR enriched with function symbols fR(Y, ē)
(including constants c ∈ Q) only depending on communication along channels Y
and terms ē, differential terms (θ)′, and val(te) and time(te), which access
the value and the timestamp of the last communication in te, respectively. By
convention, θ ∈ Q[VR] denotes a pure polynomial in VR without (·)′, val(·), and
time(·) as they occur in programs. For simplicity, we do not define Q[VR] ⊂ TrmR
as a fifth term sort but use the convention that function symbols gR can only
be replaced with Q[VR]-terms. Integer terms are variables n, function symbols
fN(Y, ē) (including constants 0, 1), addition, and length |te| of trace term te.4

The function symbol fΩ(Y, ē) includes constants ch ∈ Ω, and chan(te) is chan-
nel access. Trace terms record the communication history of programs. They
encompass variables h, function symbols fT (Y, ē) (including the empty trace ϵ),
communication items ⟨ch, θ1, θ2⟩ with value θ1 and timestamp θ2, projection

4 Omitting multiplication results in decidable Presburger arithmetic [33].
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te ↓ Y onto channels Y , and access te[ie] of the ie-th item in te. Where useful,
op(ē) denotes built-in function symbols of fixed interpretation, e.g., ·+ ·.

dLCHP’s context-sensitive program and formula syntax presumes notions of
free and bound variables (Section 2.3) defined on the context-free syntax:

Definition 2 (Programs). Communicating hybrid programs are defined by the
following grammar, where θ ∈ Q[VR] is a polynomial in VR and χ ∈ FOLR is a
formula of first-order real-arithmetic. In α ∥ β, the subprograms must not share
state but can share time and history, i.e., BV(α) ∩ BV(β) ⊆ {µ, µ′} ∪ VT .5

α, β ::= a(|Y, z̄|) | x := θ | x := ∗ | ?χ | {x′ = θ & χ} | α;β | α ∪ β | α∗ |
ch(h)!θ | ch(h)?x | α ∥ β

The program constant a(|Y, z̄|) restricts the written channels to Y ⊆ Ω and
the bound variables to z̄ ⊆ VR ∪ VT , where Y and z̄ are (co)finite. Instead of
a(|Y, z̄|), write a if Y and z̄ can be arbitrary. Assignment x := θ updates x to θ,
nondeterministic assignment x := ∗ assigns an arbitrary real value to x, and
the test ?χ does nothing if χ holds and aborts the computation otherwise. The
continuous evolution {x′ = θ&χ} follows the ODE x′ = θ for any duration as long
as formula χ is not violated. The global time µ evolves with every continuous
evolution according to ODE µ′ = 1. Sequential composition α;β executes β
after α, choice α ∪ β executes α or β nondeterministically, α∗ repeats α zero
or more times, ch(h)!θ sends θ along channel ch, and ch(h)?x receives a value
into variable x along channel ch. The trace variable h records communication.
Finally, α ∥ β executes α and β in parallel synchronized in global time µ.

Example 3. The program ct∗ ∥ ve∗ models a simplified cruise control [23]. The
vehicle ve repeatedly receives a target velocity vtrve from the controller ct along
channel tar. The target vtrct sent by ct is in range [0, V ]. Hence, ve’s velocity vve
stays in range [0, V ] within the ϵ > 0 time units till the next communication if
vve ∈ [0, V ] held initially. The evolution {t′ = 1} allows passage of time in ct.

ct ≡ vtrct := ∗; ?(0 ≤ vtrct ≤ V ); tar(h)!vtrct ; {t′ = 1}

ve ≡ tar(h)?vtrve; ave :=
vtrve − vve

ϵ
; t0 := µ; {v′ve = ave & µ− t0 ≤ ϵ}

Definition 4 (Formulas). Formulas are defined by the grammar below for rela-
tions ∼, terms e1, e2 ∈ Trm of equal sort, and z ∈ V . Moreover, the ac-formulas
are unaffected by state change in α, i.e., (FV(A) ∪ FV(C)) ∩ BV(α) ⊆ VT .

φ,ψ,A,C ::= e1 ∼ e2 | p(Y, ē) | ¬φ | φ ∧ ψ | ∀z φ | [α]ψ | [α]{A,C}ψ

The formulas combine first-order dynamic logic with ac-reasoning. Predicate
symbols p(Y, ē) depend on channels Y and terms ē. The ac-box [α]{A,C}ψ ex-
presses that C holds after each communication event and ψ in the final state, for

5 Previous work [6] disallows reading of variables bound in parallel as their change is
not observable. This restriction is conceptually desirable but not soundness-critical.
Here we drop it for simplicity, but it could be maintained by US as well.
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all runs of α whose incoming communication satisfies A. Other connectives ∨,
→, ↔ and quantifiers ∃z φ ≡ ¬∀z ¬φ can be derived. The relations ∼ include =
for all term sorts, ≥ on real and integer terms, and prefixing ⪯ on trace terms.

By convention, the predicate symbol qR can only be replaced with formulas
of first-order real arithmetic. It serves as placeholder for tests χ in CHPs.

Example 5. The cruise control from Example 3 is safe if its velocity stays in
range [0, V ]. This can be expressed with the formula φ→ [ct∗ ∥ ve∗]ψsafe, where
ψsafe ≡ 0 ≤ vve ≤ V and φ ≡ ψsafe ∧ ϵ > 0 ∧ V > 0.

2.2 Semantics

A trace τ = (τ1, ..., τk) is a finite chronological sequence of communication events
τi = ⟨chi, di, si⟩, where chi ∈ Ω, and di ∈ R is the communicated value, and
si ∈ R is a timestamp such that si ≤ sj for 1 ≤ i < j ≤ k. A recorded trace
τ = (τ1, ..., τk) additionally carries a trace variable hi ∈ VT with each event, i.e.,
τi = ⟨hi, chi, di, si⟩. For variable z ∈ VM and M ∈ {R,N, T }, let type(z) = M. A
state v maps each z ∈ V to a value v(z) ∈ type(z). The sets of traces, recorded
traces, and states are denoted T , Trec, and S, respectively.

For d ∈ type(z), the state vdz is the modification of v at z to d. For τ ∈ Trec,
the trace τ(h) ∈ T is obtained from the subsequence of τ carrying h ∈ VT by
removing the carried variable. State-trace concatenation v · τ ∈ S for τ ∈ Trec,
appends τ(h) to v at h for all h ∈ VT . The projection τ ↓Y of (recorded) trace τ
is the subsequence of all communication events in τ whose channel is in Y ⊆ Ω.
The state projection v ↓ Y ∈ S modifies v at h to v(h) ↓ Y for all h ∈ VT .

An interpretation I assigns a function I(fM : M1, . . . ,Mk) :×k

i=1
Mi → M to

each function symbol fM that is smooth in all real-valued arguments if M = R,
and a relation I(p : M1, . . . ,Mk) ⊆×k

i=1
Mi to each k-ary predicate symbol p.

Definition 6 (Term semantics). The valuation Iv[[e]] ∈ R ∪ N ∪ Ω ∪ T of
term e in interpretation I and state v is defined as follows:

Iv[[z]] = v(z)

Iv[[f(Y, e1, ..., ek)]] = I(f)(Iṽ[[e1]], ..., Iṽ[[ek]]) where ṽ = v ↓ Y
Iv[[op(e1, . . . , ek)]] = op(Iv[[e1]], . . . , Iv[[ek]]) for builtin op ∈ {·+ ·, · ↓ Y, . . .}

Iv[[(θ)′]] =
∑
x∈VR

v(x′)
∂Iv[[θ]]

∂x

The projection ṽ = v ↓ Y ensures that f(Y, ē) only depends on Y , i.e., the
communication in v along channels Y ∁ does not matter. The differentials (θ)′

have a semantics describing the local rate of change of θ [29].
The denotational semantics of CHPs [6] combines dL’s Kripke semantics [29]

with a linear history semantics [47] and a global notion of time. Denotations
are subsets of D = S × Trec × S⊥ with S⊥ = S ∪ {⊥}. Final state ⊥ marks an
unfinished computation, i.e., it still can be continued or was aborted due to a
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failing test. If (w′ = ⊥ and τ ′ ⪯ τ), where ⪯ is the prefix relation on traces,
or (τ ′, w′) = (τ, w), then (τ ′, w′) is a prefix of (τ, w) written (τ ′, w′) ⪯ (τ, w).
Since (even empty) communication of unfinished computations is still observable,
denotations D ⊆ D of CHPs are prefix-closed and total, i.e., (v, τ, w) ∈ D and
(τ ′, w′) ⪯ (τ, w) implies (v, τ ′, w′) ∈ D, and ⊥D ⊆ D with ⊥D = S × {ϵ}× {⊥}.
Moreover, all (v, τ, w) ∈ D are chronological, i.e., v(µ) ≤ w(µ) and when τ =
(τ1, . . . , τk) ̸= ϵ and let τi(µ) = (⟨hi, chi, di, si⟩)(µ) = si, then v(µ) ≤ τ1(µ) and
if w ̸= ⊥, then τk(µ) ≤ w(µ). Note that τ is chronological as all traces are.

The interpretation I(a(|Y, z̄|)) ⊆ D of a program constant a(|Y, z̄|) is a prefix-
closed and total set of chronological computations that (i) only communicate
along (write) channels Y and (ii) only bind variables z̄. More precisely, for all
(v, τ, w) ∈ I(a(|Y, z̄|)), we have (i) τ ↓Y ∁ = ϵ, and (ii) v = w on VT and w · τ = v
on z̄∁. For D,M ⊆ D, we define D⊥ = {(v, τ,⊥) | (v, τ, w) ∈ D}, and (v, τ, w) ∈
D▷M if (v, τ1, u) ∈ D and (u, τ2, w) ∈M exist with τ = τ1 ·τ2. For states wα, wβ ,
the merged state wα⊕wβ is ⊥ if one of the substates wα or wβ is ⊥. Otherwise,

wα ⊕ wβ = wα on BV(α) and wα ⊕ wβ = wβ on BV(α)∁ (or, equivalently by

syntactic well-formedness, on BV(β)∁ and BV(β), respectively). If Y is the set of
all channel names occurring in α, we write τ ↓ α for τ ↓ Y .

Definition 7 (Program semantics). Given an interpretation I, the semantics
I[[α]] ⊆ D of a CHP α is defined as follows, where ⊥D = S × {ϵ} × {⊥} and ⊨
denotes the satisfaction relation (Def. 8):

I[[a(|Y, z̄|)]] = I(a(|Y, z̄|))
I[[x := θ]] = ⊥D ∪ {(v, ϵ, w) | w = vdx where d = Iv[[θ]]}
I[[x := ∗]] = ⊥D ∪ {(v, ϵ, w) | w = vdx where d ∈ R}
I[[?χ]] = ⊥D ∪ {(v, ϵ, v) | Iv ⊨ χ}

I[[{x′ = θ & χ}]] = ⊥D ∪
{
(v, ϵ, φ(s)) | v = φ(0) on {µ′, x′}∁, and φ(ζ) = φ(0)

on {x, x′, µ, µ′}∁, and Iφ(ζ) ⊨ µ′ = 1 ∧ x′ = θ ∧ χ for all ζ ∈ [0, s] and

a solution φ : [0, s] → S with φ(ζ)(z′) =
dφ(t)(z)

dt
(ζ) for z ∈ {x, µ}

}
I[[ch(h)!θ]] = {(v, τ, w) | (τ, w) ⪯ (⟨h, ch, d, v(µ)⟩, v) where d = Iv[[θ]]}
I[[ch(h)?x]] = {(v, τ, w) | (τ, w) ⪯ (⟨h, ch, d, v(µ)⟩, vdx) where d ∈ R}
I[[α ∪ β]] = I[[α]] ∪ I[[β]]

I[[α;β]] = I[[α]] ◦̂ I[[β]] def= (I[[α]])⊥ ∪ (I[[α]] ▷ I[[β]])

I[[α∗]] =
⋃
n∈N

(I[[α]])n =
⋃
n∈N

I[[αn]] where α0 ≡ ?T and αn+1 = α;αn

I[[α1 ∥ α2]] =

{
(v, τ, wα1

⊕ wα2
)

∣∣∣∣ (v, τ ↓ αj , wαj ) ∈ I[[αj ]] for j = 1, 2, and

wα1 = wα2 on {µ, µ′}, and τ = τ ↓ (α1∥α2)

}
The semantics is indeed constructed prefix-closed, total, and chronological.

Communication τ of α1 ∥ α2 is implicitly characterized via its subsequences for
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the subprograms. By τ = τ ↓ (α1 ∥ α2), there is no non-causal communication.
Joint communication and the whole computation are synchronized in global
time by the projections and by wα1 = wα2 on {µ, µ′}, respectively. Likewise, by
projection, communication is synchronously recorded by trace variables.

Definition 8 (Formula semantics). The satisfaction Iv ⊨ ϕ of a dLCHP for-
mula ϕ in interpretation I and state v is inductively defined as follows:

1. Iv ⊨ e1∼e2 if Iv[[e1]] ∼ Iv[[e2]] where ∼ is any relation symbol
2. Iv ⊨ p(Y, e1, . . . , ek) if (Iṽ[[e1]], . . . , Iṽ[[ek]]) ∈ I(p) where ṽ = v ↓ Y
3. Iv ⊨ φ ∧ ψ if Iv ⊨ φ and Iv ⊨ ψ
4. Iv ⊨ ¬φ if Iv ⊭ φ, i.e., it is not the case that Iv ⊨ φ
5. Iv ⊨ ∀z φ if Ivdz ⊨ φ for all d ∈ type(z)
6. Iv ⊨ [α]ψ if Iw · τ ⊨ ψ for all (v, τ, w) ∈ I[[α]] with w ̸= ⊥
7. Iv ⊨ [α]{A,C}ψ if for all (v, τ, w) ∈ I[[α]] the following conditions hold:

{Iv · τ ′ | τ ′ ≺ τ} ⊨ A implies Iv · τ ⊨ C (commit)(
{Iv · τ ′ | τ ′ ⪯ τ} ⊨ A and w ̸= ⊥

)
implies Iw · τ ⊨ ψ (post)

Where U ⊨ φ for a set of interpretation-state pairs U and any formula φ if
Iv ⊨ φ for all Iv ∈ U . In particular, ∅ ⊨ φ.

In item 6 and 7, reachable worlds are built from states v and w, and com-
munication τ , as change of state and communication are observable. The strict
prefix ≺ for the assumption in case (commit) in item 6 excludes (when A ≡ C)
the circularity that commitment C can be shown in states where it is assumed.

2.3 Static Semantics

In the uniform substitution process, checks of free and bound variables, as well
as accessed and written channels, separate sound from unsound axiom instanti-
ations. As parallelism requires fine-grained control over channels, the static se-
mantics for dL [29] is lifted to a communication-aware static semantics for dLCHP.
It uses accessed channels to characterize the subsequence of a communication
trace influencing truth of a formula even more precisely than free variables.

To precisely grasp free and bound variables, and accessed and written chan-
nels, Def. 9 gives a semantic characterization. In this section, formulas are con-
sidered truth-valued, i.e., Iv[[ϕ]] = tt if Iv ⊨ ϕ and Iv[[ϕ]] = ff if Iv ⊭ ϕ.
Definition 9 (Static semantics). For term or formula e, and program α, free
variables FV(e) and FV(α), bound variables BV(α), accessed channels CN(e), and
written channels CN(α) form the static semantics.

FV(e) = {z ∈ V | ∃I, v, ṽ such that v = ṽ on {z}∁ and Iv[[e]] ̸= Iṽ[[e]]}

CN(e) = {ch ∈ Ω | ∃I, v, ṽ such that v ↓ {ch}∁ = ṽ ↓ {ch}∁ and Iv[[e]] ̸= Iṽ[[e]]}

FV(α) = {z ∈ V | ∃I, v, ṽ, τ, w such that v = ṽ on {z}∁ and (v, τ, w) ∈ I[[α]],

and there is no (ṽ, τ̃ , w̃) ∈ I[[α]] such that τ̃ = τ and w = w̃ on {z}∁}
BV(α) = {z ∈ V | ∃I, (v, τ, w) ∈ I[[α]] such that w ̸= ⊥ and (w · τ)(z) ̸= v(z)}
CN(α) = {ch ∈ Ω | ∃I, (v, τ, w) ∈ I[[α]] such that τ ↓ {ch} ≠ ϵ}
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The already subtle static semantics of hybrid systems [29] becomes even
more subtle with communication and parallelism. For example, CHPs (silently)
synchronize with the global time µ, which is free and bound in ODEs, and the
differential µ′ is bound, i.e., µ ∈ FV({x′ = θ & χ}) and µ, µ′ ∈ BV({x′ = θ & χ})
if the evolution has a run of non-zero duration, regardless of whether µ occurs
in x. Since reachable worlds of CHPs consist of communication and state, bound
variables BV(α) of program α compare v with the state-trace concatenation w · τ
instead of missing τ . Consequently, h ∈ BV(ch(h)!θ) ⊆ FV(ch(h)!θ), which also
reflects that the initial communication never gets lost. All proofs for this section
and computable overapproximations of the static semantics are in AppendixA.

Lemma 10 (Bound effect property). The sets BV(α) and CN(α) are the
smallest sets with the bound effect property for program α. That is, v = w on VT
and v = w · τ on BV(α)∁ if w ̸= ⊥, and τ ↓ CN(α)∁ = ϵ for all (v, τ, w) ∈ I[[α]].

By the following communication-aware coincidence property, terms and for-
mulas only depend on their free variables, which for trace variables can be further
refined to the subtraces whose channels are accessed. This subtrace-level preci-
sion is crucial in the soundness proof of the parallel injection axiom as it allows
to drop β from [α ∥ β]ψ only if β does not write channels of ψ that are not also
written by α. The signature Σ(·) of an expression denotes all occurring symbols.

Lemma 11 (Coincidence for terms and formulas). The sets FV(e) and
CN(e) are the smallest sets with the communication-aware coincidence property
for term or formula e. That is, if v ↓ CN(e) = ṽ ↓ CN(e) on FV(e) and I = J
on Σ(e), then Iv[[e]] = Jṽ[[e]]. In particular, for formula ϕ: Iv ⊨ ϕ iff Jṽ ⊨ ϕ.

Programs communicate but do not depend on the recorded history, thus
the coincidence property for programs is not communication-aware. However,
programs can produce the same communication starting from coinciding states.

Lemma 12 (Coincidence for programs). The set FV(α) is the smallest set
with the coincidence property for program α. That is, if v = ṽ on X ⊇ FV(α),
and I = J on Σ(α), and (v, τ, w) ∈ I[[α]], then (ṽ, τ̃ , w̃) ∈ J [[α]] exists such that
w = w̃ on X, and τ = τ̃ , and (w = ⊥ iff w̃ = ⊥).

3 Uniform Substitution for dLCHP

In dLCHP, a uniform substitution [29] σ maps function and predicate symbols to
terms (of equal sort) and formulas, respectively, while substituting the arguments
of the symbol for their placeholders in the replacement, and program constants
are mapped to CHPs. For example, σ = {f(·) 7→ · + 1, a 7→ ch(h)?v; {x′ = v}}
replaces all occurrences of function symbol f with ·+1 while the reserved 0-ary
function symbol · marks the positions for the parameter of f in the replacement.
Moreover, σ replaces the program constant a with the program ch(h)?v; {x′ = v}.

The key to sound uniform substitution is that new free variables must not be
introduced into a context where they are bound [7]. In the presence of communi-
cation, likewise, new channel access must not be introduced into contexts where



Uniform Substitution for Communicating Hybrid Programs 9

the channel is written (B I). For parallelism, substitution must not reveal inter-
nals of the parallel context to the local abstraction of a subprogram (B II), and
must not violate state disjointness. The one-pass approach [31] used for dLCHP

postpones these checks and simply applies the substitution recursively while col-
lecting written variables and channels as taboo set, thus operates linearly in the
input. Clashes between the taboo, and new free variables and channel access
are only checked locally at the replacement site. Likewise, clashes between the
permitted channels and variables of a program constant, and its replacement
program are checked locally. All proofs for this section are in AppendixB.

The substitution operator σU,WZ (α) for program α takes an input taboo U ⊆
V ∪ Ω and a parallel context W ⊆ V , and returns, if defined, the substitution
result and a set of output taboos Z ⊆ V ∪ Ω. For terms and formulas, the
substitution operator σU only takes a taboo U ⊆ V ∪Ω as input. The substitution
process clashes, i.e., prevents unsound instantiation, if it were to introduce a free
variable or accessed channel into a context where it is bound (B I) or if it were to
write variables and channels violating abstraction (B II). Moreover, substitution
preserves well-formedness of programs and formulas, i.e., substitution clashes if
replacements were to violate well-formedness.

σU (z) ≡ z for z ∈ V

σU (f(Y, e)) ≡ {· 7→ σU (e ↓ Y )}∅(σf(·)) if (FV(σf(·)) ∪ CN(σf(·))) ∩ U = ∅
σU (op(e1, . . . , ek)) ≡ op(σU (e1), . . . , σ

U (ek)) for built-in op ∈ {·+ ·, · ↓ Y, . . .}
σU ((θ)′) ≡ (σV ∪Ω(θ))′

σU (e1 ∼ e2) ≡ σU (e1) ∼ σU (e2)

σU (p(Y, e)) ≡ {· 7→ σU (e ↓ Y )}∅(σp(·)) if (FV(σp(·)) ∪ CN(σp(·))) ∩ U = ∅
σU (¬φ) ≡ ¬σU (φ)

σU (φ ∧ ψ) ≡ σU (φ) ∧ σU (ψ)

σU (∀z φ) ≡ ∀z σU∪{z}(φ)

σU ([α]ψ) ≡ [σU,∅
Z (α)]σZ(ψ)

σU ([α]{A,C}ψ) ≡ [σU,∅
Z (α)]{σZ(A),σZ(C)}σ

Z(ψ)

σU,W
U∪BV(σa)∪CN(σa)(a(|Y, z̄|)) ≡ σa if BV(σa) ⊆ z̄ and CN(σa) = Y

σU,W
U∪{x}(x := θ) ≡ x := σU∪W (θ)

σU,W
U∪{x}(x := ∗) ≡ x := ∗

σU,W
U (?χ) ≡ ?σU∪W (χ)

σU,W
Z ({x′ = θ & χ}) ≡ {x′ = σU∪W (θ) & σU∪W (χ)} with Z = U ∪ {x, x′, µ, µ′}
σU,W
U∪{ch,h}(ch(h)!θ) ≡ ch(h)!σU∪W (θ)

σU,W
U∪{ch,h,x}(ch(h)?x) ≡ ch(h)?x

σU,W
Z1∪Z2

(α ∪ β) ≡ σU,W
Z1

(α) ∪ σU,W
Z2

(β)

σU,W
Z2

(α;β) ≡ σU,W
Z1

(α);σZ1,W
Z2

(β)

σU,W
Z (α∗) ≡ (σZ,W

Z (α))∗ when σU,W
Z (α) is defined

σU,W
Z1∪Z2

(α ∥ β) ≡ σ
U,WU,β

Z1
(α) ∥ σU,WU,α

Z2
(β)

Fig. 2: Application of uniform substitution for taboo U and parallel context W ,
whereWU,γ ≡W∪(BV(σU,W (γ))\({µ, µ′}∪VT )) for any program γ, and e↓Y for
term e is recursive push down of projection ↓Y , where p(Y0, e)↓Y ≡ p(Y0∩Y, e).
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The side condition (FV(σf(·)) ∪ CN(σf(·))) ∩ U = ∅ implements locally that
the replacement for f must not introduce free parameters that are tabooed by U
(B I). The substitution {· 7→ σU (e ↓ Y )}∅ is responsible for the argument e,6

where ∅ suffices as the taboo U is already checked on e ↓ Y . By the projection,
e↓Y only depends on channels Y . Quantification ∀z taboos the bound variable z.
Program α in a box or ac-box has an empty parallel context ∅.

The substitution σU,WZ (α) computes the output taboo Z by adding the writ-
ten variables and channels of program α to U , e.g., real variable x for assignment
x := θ and for receiving ch(h)?x additionally channel ch and trace variable h.
The output taboo Z is passed to ac-formulas and postconditions of boxes and
ac-boxes for recursive checks for clashes w.r.t. (B I). Crucially for soundness,

Lemma13 below proves that σU,WZ (·) correctly computes the output taboo Z.

The taboo U∪W passed to nested expressions contains the parallel contextW
to prevent free variables in replacements of function and predicate symbols that
are bound in parallel. This prepares the substitution process to preserve the
syntax restrictions for parallel composition from previous work [6].7 Substitu-
tion for evolution {x′ = θ & χ} considers that the global time µ, µ′ is always
implicitly bound regardless of whether it occurs in x, x′. The fixpoint notation
σZ,WZ (α) for the replacement of repetition α∗ ensures that the output taboo of
the first iteration is tabooed in the subsequent iterations [31]. Computing the
parallel context of α and β in case α ∥ β requires one additional pass for both
subprograms because what they potentially bind after substitution adds to the
parallel context of the respective other subprogram.

Lemma 13 (Correct output taboo). Application σU,WZ (α) of uniform sub-
stitution retains input taboo U and correctly adds the bound variables and written
channels of program α, i.e., Z ⊇ U ∪ BV(σU,WZ (α)) ∪ CN(σU,WZ (α)).

The side condition of σU,WZ (a(|Y, z̄|)) maintains local abstraction of subpro-
grams (B II) because the replacement cannot bind more than a(|Y, z̄|), thus can-
not bind variables and channels of an abstraction that is independent of a(|Y, z̄|).
This also preserves state-disjointness (well-formedness) of parallel programs.

3.1 Semantic Effect of Uniform Substitution

The key ingredients for proving soundness of uniform substitution are Lemma16
and 17 below. They prove that the effect of the syntactic transformation applied
by uniform substitution can be equally mimicked by semantically modifying the
interpretation of function and predicate symbols, and program constants. This
adjoint interpretation σ∗

wI for interpretation I and state w changes how symbols
are interpreted according to their syntactic replacements in the substitution σ.

6 Extension to vectorial arguments is straightforward.
7 For α ∥ β, the restriction is (V(α) ∩ BV(β)) ∪ (V(β) ∩ BV(α)) ⊆ {µ, µ′} ∪ VT [6].
However, in this paper, programs obey a less restrictive syntax for simplicity.
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Definition 14 (Adjoint substitution). For interpretation I and state w, the
adjoint interpretation σ∗

wI changes the meaning of function and predicate sym-
bols, and program constants according to the substitution σ evaluated in state w:

σ∗
wI(f

M : Marg) : Marg → M; d 7→ Id· w[[σf(·)]] where M,Marg ∈ {R,N, Ω, T }
σ∗
wI(p : Marg) = {d ∈ Marg | Id· w ⊨ σp(·)} where Marg ∈ {R,N, Ω, T }
σ∗
wI(a(|Y, z̄|)) = I[[σa]]

We follow the observation for dGL [31] that the more liberal one-pass sub-
stitution requires stronger coincidence between the substitution and the adjoint
on neighborhoods of the original state. Where the dGL soundness proof has suc-
ceeded by a neighborhood semantics of state on taboos, the dLCHP proof succeeds
with a generalization to a neighborhood semantics of state and communication
on taboos. The neighborhood of a state consists of its variations:

Definition 15 (Variation). For a set U ⊆ V ∪ Ω, a state v is a U -variation
of state w if v and w only differ on variables or projections onto channels in U ,
i.e., v ↓ (U∁ ∩Ω) = w ↓ (U∁ ∩Ω) on U∁ ∩ V .

The proofs of Lemma16 and 17 follow a lexicographic induction on the struc-
ture of substitution, and term, formula, or program. In Lemma17, the induction
is mutual for formulas and programs.

Lemma 16 (Semantic uniform substitution). The term e evaluates equally
over U -variations under uniform substitution σU and adjoint interpretation σ∗

wI,
i.e., Iv[[σU (e)]] = σ∗

wIv[[e]] for all U -variations v of w.

Lemma 17 (Semantic uniform substitution). The formula ϕ and the pro-
gram α have equal truth value and semantics, respectively, over U -variations
under uniform substitution σU and adjoint interpretation σ∗

wI, i.e.,

1. for all U -variations v of w: Iv ⊨ σU (ϕ) iff σ∗
wIv ⊨ ϕ

2. for all (U∪W )-variations v of w: (v, τ, o) ∈ I[[σU,WZ (α)]] iff (v, τ, o) ∈ σ∗
wI[[α]]

3.2 Uniform Substitution Proof Rule

The proof rule US for uniform substitution is the single point of truth for the
sound instantiation of axioms (plus renaming of bound variables [29] and written
channels, e.g., [x := θ]ψ(x) to [y := θ]ψ(y) and [ch(h)?x]ψ(ch) to [dh(h)?x]ψ(dh).
Soundness of the rule, i.e., that validity of its premise implies validity of the
conclusion, immediately follows from Lemma17. Since the substitution process
starts with no taboos, σ(ϕ) is short for σ∅(ϕ). If the substitution clashes, i.e.,
σ∅(ϕ) is not defined, then rule US is not applicable.

Theorem 18 (US is sound). The proof rule US is sound.

ϕ
US

σ(ϕ)
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Unlike dL [29] and dGL [31], dLCHP has a context-sensitive syntax for programs
and formulas (see Def. 2 and Def. 4). By Proposition 19, uniform substitution,
however, preserves syntactic well-formedness. Since all axioms in Section 4 will
be well-formed, only well-formed formulas can be derived in dLCHP.

Proposition 19 (US preserves well-formedness). The result σU (ϕ) (if de-
fined) of applying uniform substitution to a well-formed formula ϕ is well-formed.

4 Axiomatic Proof Calculus

Figure 3 presents a sound proof calculus for dLCHP. The significant difference to
dLCHP’s schematic calculus [6] is that it completely abandons soundness-critical
side conditions, internalizing them syntactically in the axioms. Only axiom []WA

was adjusted to obtain a symbolic representation and an ac-version KAC of modal
modus ponens is included. Now, distribution of ac-boxes over conjuncts []AC∧
and ac-monotonicity M[·]AC derive from KAC,thus are dropped. Except for the
small changes soundness is inherited from the schematic axioms [6]. All proofs
and supplementary material for this section are in AppendixC.

Algebraic laws for reasoning about traces [6] can be easily adapted to uniform
substitution as well. Decidable first-order real arithmetic [41] and Presburger
arithmetic [33] have corresponding oracle proof rules [6].

Remark 20. To obtain a truly finite list of axioms from Fig. 3, symbolic (co)finite
sets can be finitely axiomatized as a boolean algebra together with extensionality,
which can be unrolled to a finite disjunction for (co)finite sets (see AppendixC).

Parallel Composition. The parallel injection axiom [∥ ]AC in Fig. 3 decom-
poses parallel CHPs by local abstraction (B II). Unlike dLCHP’s [6] and Hoare-
style [46, 47] schematic calculi for ac-reasoning, axiom [∥ ]AC internalizes the
noninterference property [6, Def. 7] that determines valid instances of formula

[α]{A,C}ψ → [α ∥ β]{A,C}ψ (1)

purely syntactically. To focus on noninterference, a(|Ya, z̄a|) ∥wf b(|Yb, z̄b|) abbrevi-
ates well-formed parallel composition a(|Ya, z̄a|) ∥ b(|Yb, (z̄b∩z̄∁a)∪{µ, µ′}∪VT |) us-
ing operator ∥wf for program constants a(|Ya, z̄a|), b(|Yb, z̄b|). This notation ensures
disjoint parallel state except for the global time µ, µ′ and recorder variables VT .

Intuitively, axiom [∥ ]AC restricts β in equation (1) such that α overapproxi-
mates the behavior of α ∥ β influencing A, C, or ψ. For this purpose, noninter-
ference internalized in b(|Yb∩ (Y ∁∪Ya), z̄∁|) forbids b to bind variables z̄ that are
free in the postcondition p(Y, z̄), and Y ∁ forbids b to bind channels Y (except
for channels Ya written by a because joint parallel communication can already
be observed from a, too). The cut with Yb allows downscaling of the channels b
has to bind. Since parallel programs always agree on the global time µ, µ′ and
the communication recorded by trace variables VT , the operator ∥wf allows their
sharing even if z̄∁ disallows it. Note that Ya and Y , and z̄a and z̄ may overlap.

Despite its asymmetric shape, axiom [∥ ]AC decomposes [α∥β](ϕ∧ψ) into [α]ϕ
and [β]ψ (if they mutually do not interfere) via independent proofs for [α∥β]ϕ
and [α∥β]ψ, which drop either α or β by [∥ ]AC modulo commutativity.
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[:=] [x := gR]p(x) ↔ p(gR)a

[:∗] [x := ∗]p(x) ↔ ∀x p(x)

[?] [?qR]p↔ (qR → p)a

[]⊤,⊤ [a]P ↔ [a]{T,T}P

[;]AC [a; b]{R,Q}P ↔ [a]{R,Q}[b]{R,Q}P

[∪]AC [a ∪ b]{R,Q}P ↔ [a]{R,Q}P ∧ [b]{R,Q}P

[∗]AC [a∗]{R,Q}P ↔ [a0]{R,Q}P ∧ [a]{R,Q}[a
∗]{R,Q}P

b

[]WA [a]{T,WA}T ∧ [a]{R1∧R2,Q1∧Q2}P → [a]{R,Q1∧Q2}P
c

[∥ ]AC [a(|Ya, z̄a|)]{R,Q}p(Y, z̄) → [a(|Ya, z̄a|) ∥wf b(|Yb ∩ (Y ∁ ∪ Ya), z̄
∁|)]{R,Q}p(Y, z̄)

d

[µ] [{x̄′ = gR(x̄, µ) & qR(x̄, µ)}]p(x̄, µ) ↔ [{µ′ = 1, x̄′ = gR(x̄, µ) & qR(x̄, µ)}]p(x̄, µ)a

[ch!] [ch(h)!gR]p(ch, h) ↔ ∀h0

(
h0 = h · ⟨ch, gR, µ⟩ → p(ch, h0)

)
[ch!]AC [ch(h)!gR]{r̂,q̂}p̂ ↔ q̂ ∧

(
r̂ → [ch(h)!gR]

(
q̂ ∧ (r̂ → p̂)

))
[ch?]AC [ch(h)?x]{r̂,q̂}p(ch, h, x) ↔ [x := ∗][ch(h)!x]{r̂,q̂}p(ch, h, x)

[ϵ]AC [a(|∅, VR|)]{R,Q}P ↔ Q ∧ (R → [a(|∅, VR|)]P)

W[]AC [a]{R,Q}P ↔ Q ∧ [a]{R,Q}(Q ∧ (R → P))

IAC [a∗]{R,Q}P ↔ [a0]{R,Q}P ∧ [a∗]{R,T}(P → [a]{R,Q}P)

KAC [a]{R,Q1→Q2}(P1 → P2) → ([a]{R,Q1}P1 → [a]{R,Q2}P2)

MP
p→ q p

q

GAC
Q ∧ P

[a]{R,Q}P

∀
p(x)

∀x p(x)

CE
P1 ↔ P2

C(P1)↔C(P2)

Pj ≡ pj(Y, z̄), and Rj ≡ rj(Y, h̄), and Qj ≡ qj(Y, h̄), and χ̂ ≡ χ(ch, h), where j may
be blank, and Y ⊆ Ω, z̄ ⊆ VR ∪ VT , and h̄ ⊆ VT are (co)finite.

a Replacements for function symbol gR and predicate symbol qR are restricted to poly-
nomials in VR and first-order real arithmetic, respectively.

b Recall that [α0]{R,Q}P ↔ Q ∧ (R → P) by [ϵ]AC and [?] since α0 ≡ ?T.
c WA is the compositionality condition (R ∧Q1 → R2) ∧ (R ∧Q2 → R1).
d The operator ∥wf abbreviates well-formed parallel composition (see above).

Fig. 3: dLCHP proof calculus

Axiom System. For each program statement, there is either a dynamic or an
ac-axiom because the respective other version derives by axiom []⊤,⊤ or [ϵ]AC.
Axioms [:=], [:∗], and [?] are as in dL [29]. Axioms [;]AC, [∪]AC, and [∗]AC for
decomposition, and IAC for induction carefully generalize their versions in differ-
ential [29] dynamic [13] logic to ac-reasoning. Sending is handled step-wise via
flattening the assumption-commitments by axiom [ch!]AC and axiom [ch!] that
executes the effect onto the recorder h. The duality [ch?]AC turns receiving into
arbitrary sending, which only synchronizes if it agrees with the parallel context
on the value. Usage of axiom W[]AC is for convenience. Axiom [µ] materializes
the flow of global time µ such that dL’s axiomatization of continuous evolu-
tion [29] gets applicable, which requires ODE shape x̄′ = fR(x̄). The axiomatic
proof rules GAC, MP, ∀, and CE are an ac-version of Gödels generalization rule,
modus ponens, quantifier elimination, and contextual equivalence, respectively.

The axiom []WA can weaken assumptions. Its slight change compared to
dLCHP’s schematic calculus [6] exploits that the compositionality condition WA
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is only required for a’s reachable worlds. Interestingly, dLCHP’s monotonicity
rule M[·]AC [6] does not derive from modal modus ponens KAC and Gödel gen-
eralization GAC in analogy to dL [29] but needs W[]AC handling monotonicity of
assumptions, which does not fit into GAC because necessitating the assumption
in GAC would render the derivation of [α]{ T

,T}T by GAC impossible.
Axioms using postcondition P ≡ p(Y, z̄), e.g., in [;]AC, allow any replacement

of P since accessed channels Y ⊆ Ω and free variables z̄ ⊆ VR ∪ VT can be
arbitrary. Replacements of assumptions R ≡ r(Y, h̄) and commitments Q ≡
q(Y, h̄) can instead only mention trace variables h̄ ⊆ VT bound in their context.
This reflects that trace variables are the only interface between the program α
and the ac-formulas A and C in an ac-box [α]{A,C}ψ (well-formedness).

Theorem 21 (Soundness). The proof calculus for dLCHP presented in Fig. 3
is sound as an instantiation of the schematic calculus [6].

Clashes. Clashes sort out unsound instantiations of axioms. Unlike in dL and
dGL [29, 31] whose clashes are solely due to tabooed variables in terms and
formulas, clashes in dLCHP can also be due to tabooed channels, and even due
to taboos in programs. For example, the substitution σ = {a 7→ gh(h)!1, b 7→
ch(h)!2, p 7→ψ, r 7→T, q 7→T} with ψ ≡ |h ↓ ch| > 0 ∧ |h ↓ dh| > 0 ∧ y < 0 clashes
below, where Y = {ch,dh}, and z̄ ≡ h, y, and R ≡ r(Y ), and Q ≡ q(Y ). Writing
channel ch in the replacement for b would break the local abstraction of a as ch
is accessed in ψ but not written in the replacement for a, thus the clash indeed
sorts out an unsound instantiation.

[a(|{gh}, h|)]{R,Q}p(Y, z̄) → [a(|{gh}, h|) ∥wf b(|{ch}∩(Y ∁∪{gh)}, z̄∁|)]{R,Q}p(Y, z̄)
 clash

[gh(h)!1]{T,T}ψ → [gh(h)!1 ∥ ch(h)!2]{T,T}ψ

In contrast, σ = {a 7→ch(h)?x; gh(h)!1, b 7→ch(h)!2, p 7→ψ, r 7→T, q 7→T} does
not clash below, where Y = {ch,dh}, and Ya = {ch, gh}, and other abbreviations

are as above, because ch ∈ Y ∁ ∪ Ya = {dh}∁. Intuitively, the ch-communication
of b remains observable after dropping b from the parallel composition as it is
joint with a.

∗
[∥ ]AC

[a(|Ya, h, x|)]{R,Q}p(Y, z̄) → [a(|Ya, h, x|) ∥wf b(|{ch} ∩ (Y ∁ ∪ Ya), z̄
∁|)]{R,Q}p(Y, z̄)

US
[ch(h)?x; gh(h)!1]{T,T}ψ → [(ch(h)?x; gh(h)!1) ∥ ch(h)!2]{T,T}ψ

Also note that by the operator ∥wf for well-formed parallel composition, the
recorder variable h can be shared without causing a clash above. However, clashes
prevent instantiation that would violate syntactic well-formedness of programs
(Def. 2) by binding the same state variable in parallel:

[a(|∅, x|)]{r,q}p(x, y) → [a(|∅, x|) ∥wf b(|∅, {x, y}∁|)]{r,q}p(x, y)
 clash

[x := y]{T,T}y = x→ [x := y ∥ x := 0]{T,T}y = x

Well-formedness of programs and formulas is ensured in the axioms by well-
formed parallel composition ∥wf and limitation to trace variables h̄ in Rj ≡
rj(Y, h̄) and Qj ≡ qj(Y, h̄) in ac-boxes [α]{Rj ,Qj}ψ in Fig. 3, respectively. By
Proposition 19, uniform substitution always preserves well-formedness.
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Example 22. The proof tree below decomposes safety (Example 5) of cruise con-
trol (Example 3) into safety 1 of controller ct and branch 2 to be continued
to safety of the vehicle ve. The lower subproof introduces the ac-formulas

A ≡ C ≡
(
|h ↓ tar| > 0 → 0 ≤ val(h ↓ tar) ≤ V

)
using axiom []WA to abstract from the communication between ct and ve. The
upper subproof uses the parallel injection axiom [∥ ]AC to drop ve. Uniform
substitution US does not clash as the commitment C only refers to joint com-
munication of ct and ve. Other applications of US (e.g., for []WA) are omit-
ted. Rule Prop denotes propositional reasoning. Abbreviations are as follows:
α ≡ a(|tar, vtrct , t, t

′, µ, µ′, h|), R ≡ r(tar, h), Q ≡ q(tar, h), P ≡ p(tar).

∗
Prop

(C → A) ∧ T
GAC

φ→ [ct∗∥ve∗]{T,C→A}T

2

φ→ [ct∗∥ve∗]{T∧A,T}ψsafe
∧R

φ→ [ct∗∥ve∗]{T∧A,C}T ∧ [ct∗∥ve∗]{T∧A,T}ψsafe
[]AC∧

φ→ [ct∗∥ve∗]{T∧A,C∧T}(T ∧ ψsafe)
∧R

φ→ [ct∗∥ve∗]{T,C→A}T ∧ [ct∗∥ve∗]{T∧A,C∧T}(T ∧ ψsafe)
[]WA

φ→ [ct∗∥ve∗]{T,C∧T}(T ∧ ψsafe)
[]⊤,⊤, M[·]AC

φ→ [ct∗∥ve∗]ψsafe

1

φ→ [ct∗]{T,C}T

∗
[∥ ]AC

[α]{R,Q}P → [α ∥wf b(|tar, vtrve, ave, t0, vve, v
′
ve|)]{R,Q}P

US
[ct∗]{T,C}T → [ct∗∥ve∗]{T,C}T

MP, CE
φ→ [ct∗∥ve∗]{T,C}T

M[·]AC
φ→ [ct∗∥ve∗]{T∧A,C}T

5 Related Work

Uniform substitution for differential dynamic logic dL [29] generalizes Church’s
uniform substitution for first-order logic [7, §35, 40]. Unlike the lifting from dL
to differential game logic dGL [30], dLCHP generalizes into the complementary
direction of communication and parallelism. Unlike schematic calculi [2, 18, 26,
44,46], whose treacherous schematic simplicity relies on encoding all subtlety of
parallel systems in significant soundness-critical side conditions, our development
builds upon a minimalistic non-schematic parallel injection axiom and sound
instantiation encapsulated in uniform substitution. This provides a new, more
atomic and more modular understanding of parallel systems overcoming the
root cause for large soundness-critical prover kernels [5,8,11,15,17,36]. Usage of
uniform substitution reduced the kernel of the theorem prover KeYmaera from
105 kLOC to 2 kLOC in KeYmaera X [22]. We expect dLCHP’s integration into
KeYmaera X to stay in the same order of magnitude.

To the best of our knowledge, assumption-commitment reasoning [21,46]8 has
no tool support, which might be due to vast implementation effort. The latter can

8 Assumption-commitment and rely-guarantee reasoning are specific patterns for
message-passing and shared variables concurrency, respectively. The broader assume-
guarantee principle has been used across diverse areas for various purposes.
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be underpinned by analogy with tools [5, 8, 15, 17, 36] for verification of shared-
variables concurrency, some of which use rely-guarantee reasoning [36,39]. Unlike
uniform substitution for dLCHP that enables a straightforward implementation of
a small prover kernel, they all rely on large soundness-critical code bases. Unlike
refinement checking for CSP [11] and discrete-time CSP [4], dLCHP supports
safety properties of dense-time hybrid systems. Contrary to our goal of small
prover kernels, implementations of model checkers [11] are inherently large.

Beyond embeddings of concurrency reasoning for discrete systems into proof
assistants [3,24,25,38], dLCHP can verify parallel hybrid systems synchronizing in
shared global time. The latter imposes even more complicated binding structures
than parallel or hybrid systems alone but dLCHP’s uniform substitution calculus
continues to manage them in a modular way.

The recent tool HHLPy [37] for hybrid CSP (HCSP) [16] is limited to the se-
quential fragment. Unlike extending HHLPy to parallelism, which would require
extensive soundness-critical side conditions and a treatment of the duration cal-
culus, integrating dLCHP into KeYmaera X [10] boils down to adding a finite list
of concrete object level formulas as axioms and only small changes to the uniform
substitution process. In contrast to dLCHP’s compositional parallel systems cal-
culus [6], HCSP calculi [12,19,42] are non-compositional [6] as they either unroll
exponentially many interleavings from the operational semantics [12, 42] or can
only decompose independent parallel components [19] causing limited ability to
reason about complex systems. Former HCSP tools [43, 45] only implement a
non-compositional calculus [19] reinforcing the significance of our approach for
managing parallel hybrid systems reasoning. Other hybrid process algebras defer
to model checkers for reasoning [9, 20,40]. Further discussion of dLCHP is in [6].

6 Conclusion

This paper introduced a sound one-pass uniform substitution calculus for the
dynamic logic of communicating hybrid programs dLCHP thereby mastering the
significant challenge of developing simple sound proof calculi for parallel hybrid
systems with communication. Uniform substitution can separate even notori-
ously complicated binding structures from parallelism with communication in
multi-dynamical logics into axioms and their instantiation. In the case of dLCHP,
this applies to channel access in predicates and the need for local abstraction of
subprograms in parallel statements, and it even turns out that uniform substitu-
tion can maintain a context-sensitive syntax along the way. Thanks to uniform
substitution, parallel systems reasoning reduces to multiple uses of an asymmet-
ric parallel injection axiom.

Now, with uniform substitution a straightforward implementation of dLCHP

in KeYmaera X is only one step away.
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A Details of the Static Semantics

This appendix reports proofs of the bound effect property and coincidence lem-
mas given in Section 2.3. Moreover, sound syntactical overapproximations of the
static semantics from previous work [6] are given and extended to function and
predicate symbols, and program constants.

Proof (of Lemma10). Let (v, τ, w) ∈ I[[α]] with w ̸= ⊥. Then v = w on VT can
be easily proven by induction on α because no program ever changes a trace
variable. To prove v = w · τ on BV(α)∁, let z ̸∈ BV(α). Then (w · τ)(z) = w(z) by
definition of BV(·). To prove τ ↓ CN(α)∁ = ϵ, let (v, τ, w) ∈ I[[α]] and ch ̸∈ CN(α).
Then τ ↓ {ch} = ϵ by definition of CN(·). Since this holds for all ch ∈ CN(α)∁, we
obtain τ ↓ CN(α)∁ = ϵ.

Suppose that BV(α) and CN(α) are not the smallest sets with the bound effect
property but X ⊆ V and Y ⊆ Ω with X ̸⊇ BV(α) or Y ̸⊇ CN(α) have it, too.
Then there is z ∈ BV(α) with z ̸∈ X or ch ∈ CN(α) with ch ̸∈ Y . If z ∈ BV(α)
and z ̸∈ X, then I and (v, τ, w) ∈ I[[α]] exist such that v(z) ̸= (w · τ)(z). But
then X does not have the bound effect property as z changed by α. If ch ∈ CN(α)
and ch ̸∈ Y , then I and (v, τ, w) ∈ I[[α]] exist such that τ ↓ {ch} ≠ ϵ. But then
τ ↓ Y ∁ ̸= ϵ such that Y does not have the bound effect property. ⊓⊔

The following lemma prepares the proof of the communication-aware coinci-
dence property (Lemma11) for terms and formulas:

Lemma 23. Let T τY = {τ ′ | τ ′ ↓Y = τ ↓Y } for Y ⊆ Ω and Y0 = Y ∪{ch}. Then
for all τ ′, τ ∈ T , if τ ′ ∈ T τY , then τ

′′ ∈ T τY0
exists such that τ ′′↓{ch}∁ = τ ′↓{ch}∁.

Proof. For ρ = ⟨ch, a, s⟩, we define Ω(ρ) = ch. Moreover, we identify the item ch
with the singleton {ch}. Now, the proof is by induction on the structure of τ ′:

1. τ ′ = ϵ, then let τ ′ ∈ T τY . Since τ
′ ↓ Y = ϵ, we obtain τ ↓ Y = ϵ. We define

τ ′′ = τ ↓ ch. Now, τ ′′ ↓Y0 = τ ↓ (Y0∩ ch) = τ ↓ ch, which equals τ ↓Y0 because

τ ↓ Y = ϵ. Hence, τ ′′ ∈ T τY0
. Finally, τ ′′ ↓ ch∁ = τ ↓ (ch ∩ ch∁) = ϵ = τ ′ ↓ ch∁.

2. τ ′ = ρ · τ ′0 with |ρ| = 1, then let τ ′ ∈ T τY . Hence, τ ′ ↓ Y = τ ↓ Y .
If Ω(ρ) ∈ Y , then τ ′ ↓ Y = ρ · τ ′0 ↓ Y and τ = τ1 · ρ · τ2 for some τ1, τ2 with
τ1 ↓Y = ϵ. Hence, τ ′0 ↓Y = τ2 ↓Y such that τ ′0 ∈ T τ2Y . By IH, τ ′′0 ∈ T τ2Y0

exists

such that τ ′′0 ↓ ch∁ = τ ′0 ↓ ch
∁. We define τ ′′ = τ1 ↓ ch · ρ · τ ′′0 . Since τ ′′0 ∈ T τ2Y0

,
we have τ ′′0 ↓ Y0 = τ2 ↓ Y0. Moreover, τ1 ↓ Y = ϵ implies τ1 ↓ ch = τ1 ↓ Y0.
Therefore, τ ′′↓Y0 = τ1↓(ch∩Y0)·ρ↓Y0 ·τ ′′0 ↓Y0 = τ1↓Y0 ·ρ↓Y0 ·τ2↓Y0 = τ ↓Y0.
Hence, τ ′′ ∈ T τY0

. Moreover, τ ′′ ↓ ch∁ = τ1 ↓ (ch ∩ ch∁) · ρ ↓ ch∁ · τ ′′0 ↓ ch∁ =

ρ ↓ ch∁ · τ ′′0 ↓ ch∁ = τ ′ ↓ ch∁.
Otherwise, if Ω(ρ) ̸∈ Y , then τ ′0↓Y = τ ′↓Y = τ ↓Y such that τ ′0 ∈ T τY . By IH,

τ ′′0 ∈ T τY0
exists such that τ ′′0 ↓ch∁ = τ ′0 ↓ch

∁. Now, we define τ ′′ = ρ↓ch∁ ·τ ′′0 .
Since τ ′′ ↓ Y0 = ρ ↓ (ch∁ ∩ Y0) · τ ′′0 ↓ Y0 = ρ ↓ Y · τ ′′0 ↓ Y0 = τ ′′0 ↓ Y0, we have

τ ′′ ∈ T τY0
. Finally, τ ′′ ↓ ch∁ = ρ ↓ (ch∁ ∩ ch∁) · τ ′′0 ↓ ch∁ = ρ ↓ ch∁ · τ ′′0 ↓ ch∁ =

ρ ↓ ch∁ · τ ′0 ↓ ch
∁ = τ ′ ↓ ch∁.
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⊓⊔

Proof (of Lemma11). The proof generalizes the coincidence property proofs of
dL [29, Lemma 10] to communication-aware coincidence. Since Iṽ[[e]] = Jṽ[[e]] if
I = J on Σ(e) by an induction on the structure of e, it suffices to prove that
Iv[[e]] = Iṽ[[e]] for all I. Let SX,Y be a set of states between v and ṽ according
to variables X ⊆ V and channels Y ⊆ Ω as follows:

SX,Y = {v′ | v′ ↓ Y = v ↓ Y on X and v′ ↓ Y ∁ = ṽ ↓ Y ∁ on X∁}

Fix an interpretation I and prove Iv′[[e]] = Iṽ[[e]] for all X ⊆ FV(e)∁, and
Y ⊆ CN(e)∁, and v′ ∈ SX,Y . Therefore, we increase the sets X and Y starting
from ∅ for both, where v′ may differ from ṽ, by lexicographic induction on X
and Y till we reach X = FV(e)∁ and Y = CN(e)∁. This suffices for Iv[[e]] = Iṽ[[e]]
because v ∈ SFV(e)∁,CN(e)∁ by the premise that v ↓ CN(e) = ṽ ↓ CN(e) on FV(e).

1. X = ∅ and Y = ∅, then SX,Y = {ṽ} such that Iv′[[e]] = Iṽ[[e]] for all v′ ∈ SX,Y
holds trivially.

2. X = X0 ∪ {z} with z ̸∈ X0 and z ̸∈ FV(e), then let v′ ∈ SX,Y . We define

v′′ = v′
ṽ(z)
z . By v′ ∈ SX,Y , we obtain v

′′↓Y = v↓Y on X0 since v′↓Y = v↓Y
on X, and v′′ ↓ Y ∁ = ṽ ↓ Y ∁ on X∁ since v′ ↓ Y ∁ = ṽ ↓ Y ∁ on X∁. Moreover,
v′′(z) = ṽ(z) if z ∈ VR∪VN, and v′′(z)↓Y ∁ = ṽ(h)↓Y ∁ if z ∈ VT , respectively,
by definition of v′′. Therefore, v′′ ↓Y ∁ = ṽ ↓Y ∁ on X∁ ∪{z} = X∁

0 such that
v′′ ∈ SX0,Y .

By definition of FV(e), we obtain Iv′[[e]] = Iv′′[[e]] because v′′ = v′ on {z}∁

but z ̸∈ FV(e). Finally, Iv′[[e]] = Iv′′[[e]]
IH
= Iṽ[[e]] by IH using v′′ ∈ SX0,Y .

3. X = X0 and Y = Y0∪{ch} with ch ̸∈ Y0 and ch ̸∈ CN(e), then let v′ ∈ SX,Y .

Consider z ∈ X∁∩VT . Then v′(z)↓Y ∁ = ṽ(z)↓Y ∁. Moreover, Y ∁
0 = Y ∁∪{ch}.

Therefore, by Lemma23, τ ′′z with τ ′′z ↓ Y ∁
0 = ṽ(z) ↓ Y ∁

0 exists such that
τ ′′z ↓ {ch}∁ = v′(z) ↓ {ch}∁.
Using one τ ′′z for each z ∈ X∁ ∩ VT , we define a state v′′ as follows:

v′′(z) =


v′(z) for z ∈ VR ∪ VN
v′(z) for z ∈ X ∩ VT
τ ′′z for z ∈ X∁ ∩ VT

For z ∈ X ∩ (VR ∪ VN), we have v′′(z) = v′(z) = v(z). Moreover, for z ∈
X∁ ∩ (VR ∪ VN), we have v′′(z) = v′(z) = ṽ(z). Further, for z ∈ X ∩ VT ,
we have v′′(z) ↓ Y0 = v′(z) ↓ Y0 = v(z) ↓ Y0 because v′(z) ↓ Y = v(z) ↓ Y as
v′ ∈ SX,Y . Finally, for z ∈ X∁∩VT , we have v′′(z)↓Y ∁

0 = τ ′′z ↓Y ∁
0 = ṽ(z)↓Y ∁

0

due to Lemma23. Therefore, v′′ ∈ SX,Y0
such that Iv′′[[e]] = Iṽ[[e]] by IH.

Observe that v′′ = v′ on VR ∪ VN. Moreover, for z ∈ X ∩ VT , we have
v′′(z)↓{ch}∁ = v′(z)↓{ch}∁. Finally, for z ∈ X∁∩VT , we have v′′(z)↓{ch}∁ =
τ ′′z ↓ {ch}∁ = v′(z) ↓ {ch}∁ due to Lemma23. Overall, v′′ ↓ {ch}∁ = v′ ↓ {ch}∁.
Since ch ̸∈ CN(e), we obtain Iv′′[[e]] = Iv′[[e]] from the definition of CN(e).
Finally, Iv′[[e]] = Iv′′[[e]] = Iṽ[[e]].
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Suppose that FV(e) and CN(e) are not the smallest sets with the coincidence
property but X ⊆ V and Y ⊆ Ω with X ̸⊇ FV(e) or Y ̸⊇ CN(e) have the
coincidence property, too. Then there is z ∈ FV(e) with z ̸∈ X or ch ∈ CN(e)
with ch ̸∈ Y . If z ∈ FV(e) and z ̸∈ X, then by definition of FV(e), states v, ṽ with
v = ṽ on {z}∁ exist such that Iv[[e]] ̸= Iṽ[[e]]. But then (X,Y ) does not have the
coincidence property because v↓Y = ṽ↓Y on X but Iv[[e]] ̸= Iṽ[[e]]. If ch ∈ CN(e)
and ch ̸∈ Y , then by definition of CN(e), states v, ṽ with v ↓ {ch}∁ = ṽ ↓ {ch}∁
exist such that Iv[[e]] = Iṽ[[e]]. But then (X,Y ) does not have the coincidence
property because v ↓ Y = ṽ ↓ Y but Iv[[e]] ̸= Iṽ[[e]]. ⊓⊔

Proof (of Lemma 12). The proof generalizes the coincidence property proofs
of dL [29, Lemma 12] to a coincidence property for CHPs. Let v′S be the state
between v and ṽ according to the variables S, i.e., v′S = ṽ on S and v′S = v

on S∁. Then we prove by induction on S ⊆ FV(α)∁ that for all v′S a computation

(v′S , τ
′, w′) ∈ I[[α]] exists such that w′ = w on S∁, and τ ′ = τ , and (w′ = ⊥ iff

w = ⊥). This suffices to prove the lemma because first, X∁ ⊆ FV(α)∁ such that
(v′
X∁ , τ

′, w′) ∈ I[[α]], where v′
X∁ = ṽ on X∁ and v′

X∁ = v = ṽ on (X∁)∁ = X, and

τ ′ = τ , and w′ = w on (X∁)∁ = X. Second, I[[α]] = J [[α]] by an induction on α.
Now, we proceed with the induction on S:

1. S = ∅, then v′S = v. If we define τ ′ = τ and w′ = w, then (v′S , τ
′, w′) ∈ I[[α]]

and fulfills the conditions.
2. S = S0 ∪ {z} with z ̸∈ S0 and z ̸∈ FV(α), then let v′S be between v and ṽ

according to S. Moreover, let v′′ = (v′S)
v(z)
z . Since v′′ = ṽ on S0 and v′′ = v

on S∁
0 , we have v′′ = v′S0

such that by IH, (v′′, τ ′′, w′′) exists with w′′ = w

on S∁
0 , and τ ′′ = τ , and (w′′ = ⊥ iff w = ⊥). Since v′′ = v′S on {z}∁ but

z ̸∈ FV(α), there is (v′S , τ
′, w′) ∈ I[[α]] by the definition of FV(α) such that

τ ′ = τ ′′ and w′ = w′′ on {z}∁, which includes that (w′ = ⊥ iff w′′ = ⊥).
Thus, w′ = w′′ = w on {z}∁ ∩ S∁

0 = S∁. Moreover, τ ′ = τ ′′ = τ and (w′ = ⊥
iff w = ⊥).

Suppose that FV(α) is not the smallest set with the coincidence property but
X ̸⊇ FV(α) has the property, too. Then there is z ∈ FV(α) with z ̸∈ X. By
definition of FV(α), interpretation I, and (v, τ, w) ∈ I[[α]], and ṽ exist such that
v = ṽ on {z}∁ and (v, τ, w) ∈ I[[α]] but there are no τ̃ , w̃ such that (ṽ, τ̃ , w̃) ∈
I[[α]], and w̃ = w on {z}∁, and τ̃ = τ , and (w̃ = ⊥ iff w = ⊥). But then X does
not have the coincidence property because v = ṽ on {z}∁ ⊇ X but no τ̃ and w̃
exist such that (ṽ, τ̃ , w̃) ∈ I[[α]], and w̃ = w on X, and τ̃ = τ , and (w̃ = ⊥ iff
w = ⊥). ⊓⊔

The static semantics of Def. 9 is not computable [34]. Def. 24–29 adapt sound
overapproximations of the static semantics computed from the syntactical struc-
ture [6] to dLCHP. The definitions add the cases for function and predicate sym-
bols, and program constants, which were only introduced in this paper.

Crucially, the bound effect property and the coincidence lemmas apply for
overapproximations of the static semantics as well. Thus, the overapproximations
can be soundly used in an implementation of uniform substitution.
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Definition 24 (Bound variables). The set of (syntactically) bound variables
BV (α) of a program α is inductively defined as follows, where {z̄} = ∪z∈z̄{z}:

BV(a(|Y, z̄|)) = {z̄}
BV(x := e) = BV(x := ∗) = {x}

BV({x′ = θ & χ}) = {x, x′, µ, µ′}
BV(?χ) = ∅

BV(ch(h)!θ) = {h}
BV(ch(h)?x) = {h, x}

BV(α ∪ β) = BV(α;β) = BV(α ∥ β) = BV(α) ∪BV(β)
BV(α∗) = BV(α)

Definition 25 (Written channels). The set of (syntactically) written chan-
nels CN(α) of a program α is inductively defined as follows:

CN(a(|Y, z̄|)) = Y

CN(x := e) = CN(x := ∗) = CN({x′ = θ & χ}) = CN(?χ) = ∅
CN(ch(h)!θ) = CN(ch(h)?x) = {ch}

CN(α ∪ β) = CN(α;β) = CN(α ∥ β) = CN(α) ∪ CN(β)

CN(α∗) = CN(α)

Definition 26 (Parameters of terms). The sets of (syntactically) free vari-
ables FV (e) and (syntactically) accessed channels CN(e) of a term e are in-
ductively defined below, where op is any built-in function symbol of fixed in-
terpretation (see Def. 1), e.g., · + ·, except for projection · ↓ ·. Moreover, let
FV (ē) = ∪e∈ē FV (e) and CN(ē) = ∪e∈ē CN(e).

FV(f(Y, ē)) = FV(ē)

FV(z) = {z} for z ∈ V

FV(op(ē)) = FV(ē)

FV(te ↓ Y ) = FV(te)

CN(f(Y, ē)) = Y ∩ CN(ē)

CN(h) = Ω for h ∈ VT

CN(z) = ∅ for z ̸∈ VT

CN(op(ē)) = CN(ē)

CN(te ↓ Y ) = Y ∩ CN(te)

The must-bound variables MBV (α) (Def. 27) are those variables that are
bound on all execution paths of a program α. In contrast to BV (α), they can be
soundly used [29] in the cases for FV (α;β) in Def. 28 and FV ([α]ψ) in Def. 29.

Definition 27 (Must-bound variables). The set of must-bound variables
MBV (α) of a program α is inductively defined as follows:

MBV(a(|Y, z̄|)) = ∅
MBV(α) = BV(α) for atomic CHPs α except for program constants

MBV(α ∪ β) =MBV(α) ∩MBV(β)
MBV(α;β) =MBV(α ∥ β) =MBV(α) ∪MBV(β)

MBV(α∗) = ∅
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Definition 28 (Free variables of programs). The set of (syntactically) free
variables FV (α) of a program α is inductively defined as follows:

FV(a(|Y, z̄|)) = VR ∪ VT

FV(x := θ) = FV(θ)

FV(x := ∗) = ∅
FV(?χ) = FV(χ)

FV({x′ = θ & χ}) = {x, µ} ∪ FV(θ) ∪ FV(χ)
FV(ch(h)!θ) = {µ, h} ∪ FV(θ)
FV(ch(h)?x) = {µ, h}

FV(α;β) = FV(α) ∪ (FV(β) \MBV(α))
FV(α ∪ β) = FV(α ∥ β) = FV(α) ∪ FV(β)

FV(α∗) = FV(α)

Definition 29 (Parameters of formulas). The sets of (syntactically) free
variables FV (ϕ) and (syntactically) accessed channels CN(ϕ) of a formula ϕ
are inductively defined as follows, where FV (ē) = ∪e∈ē FV (e) and CN(ē) =
∪e∈ē CN(e):

FV(p(Y, ē)) = FV(ē)

FV(e1 ∼ e2) = FV(e1) ∪ FV(e2)
FV(¬φ) = FV(φ)

FV(φ ∧ ψ) = FV(φ) ∪ FV(ψ)
FV(∀z φ) = FV(φ) \ {z}
FV([α]ψ) = FV(α) ∪ (FV(ψ) \MBV(α))

FV([α]{A,C}ψ) = FV([α]ψ) ∪ FV(A) ∪ FV(C)

CN(p(Y, ē)) = Y ∩ CN(ē)

CN(e1 ∼ e2) = CN(e1) ∪ CN(e2)

CN(¬φ) = CN(φ)

CN(φ ∧ ψ) = CN(φ) ∪ CN(ψ)

CN(∀z φ) = CN(φ)

CN([α]ψ) = CN(ψ)

CN([α]{A,C}ψ) = CN(A) ∪ CN(C) ∪ CN(ψ)

B Soundness of Uniform Substitution

This appendix reports the soundness proof of uniform substitution for dLCHP

(Theorem21) and a proof that uniform substitution preserves the syntactic well-
formedness of formulas (Proposition 19). Moreover, Theorem32 given in this
section enables the instantiation of axiomatic proof rules by uniform substitution.

Proof (of Lemma 13). The proof is by induction on the structure of program α
and generalizes the corresponding proof for dGL [31, Lemma 13], where U0 is
short for U ∪W and BP(·) = BV(·) ∪ CN(·) denotes all bound parameters:

1. α ≡ a(|Y, z̄|), then Z = U ∪ BP(σa) = U ∪ BP(σU,WZ (a(|Y, z̄|))).
2. α ≡ x := θ, then Z = U ∪ {x} and {x} ⊇ BV(x := σU0(θ)) = BV(σU,WZ (α)).

Moreover, ∅ = CN(σU,WZ (α)). Hence, Z ⊇ U ∪ BP(σU,WZ (α)).

3. α ≡ x := ∗, then Z = U ∪ {x} and {x} = BV(α) = BV(σU,WZ (α)). Moreover,

∅ = CN(σU,WZ (α)). Hence, Z ⊇ U ∪ BP(σU,WZ (α)).
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4. α ≡ {x′ = θ & χ}, then Z = U ∪ {x, x′, µ, µ′}. Moreover, {x, x′, µ, µ′} ⊇
BV({x′ = σU0(θ) & σU0(χ)}) = BV(σU,WZ (α)) and ∅ = CN(σU,WZ (α)). Thus,

Z ⊇ U ∪ BP(σU,WZ (α)).

5. α ≡ ?χ, then Z = U and ∅ = BV(?σU0(χ)) = BV(σU,WZ (?χ)). Moreover,

∅ = CN(σU,WZ (?χ)). Thus, Z ⊇ U ∪ BP(σU,WZ (?χ)).

6. α ≡ β; γ, then σU,WZ (β; γ) ≡ σU,WZ0
(β);σZ0,W

Z (γ). By IH, Z0

IH
⊇ U∪BP(σU,WZ0

(β))

and Z
IH
⊇ Z0∪BP(σZ0,W

Z (γ)). Thus, Z ⊇ Z0∪BP(σZ0,W
Z (γ)) ⊇ U∪BP(σU,WZ0

(β))∪
BP(σZ0,W

Z (γ)) ⊇ U ∪ BP(σU,WZ0
(β);σZ0,W

Z (γ)) ⊇ U ∪ BP(σU,WZ (β; γ)).

7. α ≡ β ∪ γ, then σU,WZ (β ∪ γ) ≡ σU,WZ1
(β) ∪ σU,WZ2

(γ) with Z = Z1 ∪ Z2.

Using IH, Z = Z1 ∪ Z2

IH
⊇ U ∪ BP(σU,WZ1

(β)) ∪ BP(σU,WZ2
(γ)), which equals

U ∪ BP(σU,WZ1
(β) ∪ σU,WZ2

(γ)) = U ∪ BP(σU,WZ (β ∪ γ)).
8. α ≡ β∗, then by IH, Z ⊇ U ∪ BP(σU,WZ (β)), i.e., the input taboo U is

retained for β. Moreover, by IH, Z ⊇ BP(σZ,WZ (β)) the taboo set Z after one
iteration is retained for β. Since BV(β) ⊇ BV(β∗) and CN(β) ⊇ CN(β∗), we

obtain Z ⊇ U ∪ BP(σZ,WZ (β)) = U ∪ BP((σZ,WZ (β))∗) = Z ∪ BP(σU,WZ (β∗)).
9. α ≡ ch(h)!θ, then Z = U ∪ {ch, h} and {ch} = CN(ch(h)!σU0(θ)), which

equals CN(σU,WZ (ch(h)!θ)) and {h} = BV(ch(h)!σU0(θ)) = BV(σU,WZ (ch(h)!θ)).

Thus, Z ⊇ U ∪ BP(σU,WZ (ch(h)!θ)).
10. α ≡ ch(h)?x, then Z = U ∪{ch, h, x}. Now, observe {h, x} ⊇ BV(ch(h)?x) =

BV(σU,WZ (ch(h)?x)). Moreover, {ch} = CN(ch(h)?x) = CN(σU,WZ (ch(h)?x)).

Thus, Z ⊇ U ∪ BP(σU,WZ (ch(h)?x)).

11. α ≡ β ∥ γ, then σU,WZ (β ∥ γ) ≡ σ
U,WU,γ

Z1
(β) ∥ σU,WU,β

Z1
(γ) with Z = Z1 ∪ Z2.

Using IH, Z = Z1 ∪ Z2

IH
⊇ U ∪ BP(σ

U,WU,γ

Z1
(β)) ∪ BP(σ

U,WU,β

Z1
(γ)) ⊇ U ∪

BP(σ
U,WU,γ

Z (β) ∥ σU,WU,β

Z (γ)) = U ∪ BP(σU,WZ (β ∥ γ)). ⊓⊔

Proof (of Lemma16). The proof generalizes the substitution lemma proof for
dGL [31, Lemma 15] to multi-sorted terms and taboos with channels. The proof
is by induction along the lexicographical order ⊏ of substitution-term tuples
(σ, e) defined by (σ′, e′) ⊏ (σ, e) if σ′ ⊏ σ or (σ′ = σ but e′ ⊏ e), where ⊏ on
substitutions and terms, respectively, denotes the structural order, simultane-
ously for all U , v, and w. In the following, let v be any U -variation of w, i.e.,
v ↓ Y = w ↓ Y on U∁ ∩ V with Y = U∁ ∩Ω:

1. For z ∈ V , simply Iv[[σU (z)]] = Iv[[z]] = v(z) = σ∗
wIv[[z]].

2. In case f(Y, e), let d = Iv[[σU (e ↓ Y )]]. Then by IH, Iv[[σU (f(e ↓ Y ))]] =

Iv[[{· 7→ σU (e ↓ Y )}∅(σf(·))]] IH
= Id· v[[σf(·)]] because · has arity 0 and f has

arity 1 such that {· 7→ σU (e ↓ Y )}∅ ⊏ σ. Since σU (f(e ↓ Y )) is defined,
FV(σf(·)) ∩ U = ∅ and CN(σf(·)) ∩ U = ∅. By premise, v is a U -variation
of w, i.e., v ↓ (U∁ ∩ Ω) = w ↓ (U∁ ∩ Ω) on U∁ ∩ V . Thus, v ↓ CN(σf(·)) =
w↓CN(σf(·)) on FV(σf(·)) such that Id· v[[σf(·)]] = Id· w[[σf(·)]] by coincidence
(see Lemma11). Finally, by Def. 14, Id· w[[σf(·)]] = (σ∗

wI(f))(d), which equals
by IH, (σ∗

wI(f))(σ
∗
wIv[[e ↓ Y ]]) = σ∗

wIv[[f(e ↓ Y )]] because e ↓ Y ⊏ f(e ↓ Y ).
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3. Let op(e1, . . . , ek) be a concrete function. For 1 ≤ i ≤ k, by IH, Iv[[σU (ei)]] =
σ∗
wIv[[ei]]. Finally, Iv[[σ

U (op(e1, . . . , ek))]] = Iv[[op(σU (e1), . . . , σ
U (ek))]] =

σ∗
wIv[[op(e1, . . . , ek)]] because Iv[[op(e1, . . . , ek)]] is a function of Iv[[ei]] for

1 ≤ i ≤ k.
4. By IH, Iv[[σV ∪Ω(θ)]] = σ∗

wI[[θ]]v for all v, w since v is a (V ∪Ω)-variation of

any state. Hence, Iv[[σU ((θ)′)]] = Iv[[(σV ∪Ω(θ))′]] =
∑
x v(x

′)∂Iv[[σ
V ∪Ω(θ)]]
∂x

IH
=∑

x v(x
′)
∂σ∗

wIv[[θ]]
∂x = σ∗

wIv[[(θ)
′]]. ⊓⊔

Lemma 30. Let (v, τ, o) ∈ σ∗
wI[[α]], the uniform substitution σU,∅Z (α) be defined,

and v be a U -variation of w. Then o · τ is a Z-variation of w.

Proof. Since v is a U -variation of w (Def. 15), we have

v ↓ Y = w ↓ Y on U∁ ∩ V with Y = U∁ ∩Ω, (2)

and by the bound effect property (Lemma10), we obtain

v = w on BV(σU,∅Z (α))∁ ∪ VT and τ ↓ CN(σU,∅Z (α))∁ = ϵ. (3)

If only o ·τ is a U0-variation of w, where U0 = U ∪BV(σU,∅Z (α))∪CN(σU,∅Z (α)),
then o ·τ is a Z-variation of w by Lemma13. To prove o ·τ is a U0-variation of w,
we handle the variable restriction U∁

0 ∩V separately for VR ∪VN and VT : In case
VR∪VN, by equation (2), v = w on U∁∩(VR∪VN), and by equation (3), v = o·τ on

BV(σU,∅Z (α))∁∩(VR∪VN) such that o ·τ = v = w on BV(σU,∅Z (α))∁∩U∁∩(VR∪VN).
Moreover, observe that BV(σU,∅Z (α))∁ ∩ U∁ ∩ (VR ∪ VN) = U∁

0 ∩ (VR ∪ VN) since

CN(σU,∅Z (α))∩(VR∪VN) = ∅. In case VT , let h ∈ U∁
0 ∩VT = BV(σU,∅Z (α))∁∩U∁∩VT

and Y0 = U∁
0 ∩Ω = CN(σU,∅Z (α))∁ ∩ Y . Then we have

(o · τ)(h) ↓ Y0 = o(h) ↓ Y0 · τ(h) ↓ Y0
(3)
= o(h) ↓ Y0

(3)
= v(h) ↓ Y0

(2)
= o(h) ↓ Y0

because CN(σU,∅Z (α)) ⊆ Y0 and Y ⊆ Y0. ⊓⊔

By mentioning Y , the program constant a(|Y, z̄|) signals that a synchronizes
along all the channels Y .9 Synchronization forces the parallel context to agree
with the local program on the communication along the synchronized channels.
Uniform substitution must preserve synchronization as otherwise the parallel
context could unsoundly perform additional communication.

For example, the substitution σ = {a 7→ ?T, b 7→ ch(h)!θ} would turn the
valid formula

[a(|ch, z̄|)]|h ↓ ch| = 1 → [a(|ch, z̄|) ∥ b(|ch, z̄∁|)]|h ↓ ch| = 1

9 Synchronization must not be confused with actually reading or writing all the chan-
nels since a program can simply not communicate along a channel, e.g., skip∪ch(h)!θ
synchronizes on ch but not all runs communicate along ch.
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into the invalid formula

[?T]|h ↓ ch| = 1 → [?T ∥ ch(h)!θ]|h ↓ ch| = 1

stating that if the initial history contains one ch-communication ([?T]|h↓ch| = 1),
there is still only one after sending along ch by ch(h)!θ . The problem is that the
replacement for a no longer forces the replacement for b to synchronize along ch.
Where b could only communicate along ch if it agreed on this communication
with a, the replacement for b unsoundly can perform additional communication
independent of the replacement for a.

Uniform substitution (see Fig. 2) preserves synchronization by the side condi-
tion CN(σa) = Y for replacing program constants a(|Y, z̄|). The standard intuition
for uniform substitution would suggest that CN(σa) ⊆ Y suffices since this al-
ready prevents the local replacement of a to unsoundly bind accessed channels.

The additional inclusion CN(σa) ⊇ Y ensures that uniform substitution σ(α)
for program α preserves the synchronization along the channels CN(α) where α
synchronizes on, i.e., CN(α) ⊆ CN(σ(α)) with syntactical channels CN(·) (see
AppendixA). Since the upper bound CN(σα) ⊆ Y is defined semantically, the
substitution σ(α) might introduce extra synchronization on the channels Cα =
CN(σ(α)) \ CN(α). However, this is harmless as σ(α) still performs no actual
communication on Cα, i.e., Cα ∩ CN(σ(α)) = ∅. Hence, potential extra synchro-
nization in σ(α) at most leads to less behavior when parallel programs do not
agree with empty communication along Cα. In summary, CN(α) is bound as fol-
lows: CN(σ(α)) ⊆ CN(α) ⊆ CN(σ(α)). Lemma31 heavily relies on these bounds
and is crucially used later in proving Lemma17 about uniform substitution.

Lemma 31 (Uniform substitution preserves synchronization). Let α

and β be programs, the substitutions σ(γ) = σU,WZ (γ) for γ ∈ {α, β} be defined,
and I an interpretation. Then for γ ∈ {α, β}, the following are equivalent:

1. (v, τ ↓ σ(γ), oγ) ∈ I[[σ(γ)]] for γ ∈ {α, β} and τ ↓ (σ(α) ∥ σ(β)) = τ
2. (v, τ ↓ γ, oγ) ∈ I[[σ(γ)]] for γ ∈ {α, β} and τ ↓ (α ∥ β) = τ

Proof. For γ ∈ {α, β}, the following set inclusions can be proven by induction
on the structure of γ:

CN(σ(γ)) ⊆ CN(γ) ⊆ CN(γ) ⊆ CN(σ(γ)) (4)

First, CN(σ(γ)) ⊆ CN(γ) because locally each replacement σa of a program
constant a(|Y, z̄|) cannot write more channels than a(|Y, z̄|) due to the side con-
dition CN(σa) ⊆ Y in Fig. 2. The inclusion CN(γ) ⊆ CN(γ) holds as CN(γ)
is a sound overapproximation of CN(γ) (see AppendixA). In the induction for
CN(γ) ⊆ CN(σ(γ)), the case CN(a(|Y, z̄|)) = Y ⊆ CN(σa) ⊆ CN(σa) if γ ≡ a(|Y, z̄|)
uses CN(σa) ⊇ Y from Fig. 2 again.

First, we prove that item 1 implies item 2. Therefore, let Cγ = CN(σ(γ)) \
CN(γ) be the extra channels introduced by substitution. Now, let (v, τ↓σ(γ), oγ) ∈
I[[σ(γ)]] for γ ∈ {α, β}. Then τ contains no communication along Cγ , i.e.,
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τ ↓Cγ = ϵ, since Cγ ∩CN(σ(γ)) = ∅ by equation (4). Hence, τ ↓σ(γ) = τ ↓γ such
that (v, τ ↓γ, oγ) ∈ I[[σ(γ)]]. Moreover, let τ ↓(σ(α) ∥ σ(β)) = τ . Intuitively, τ has
no extra communication outside CN(α) ∪ CN(β) because τ ↓ (σ(α) ∥ σ(β)) = τ
and in τ there is no communication on the difference (CN(σ(α)) ∪ CN(σ(β))) \
(CN(α)∪CN(β)). Formally, since τ ↓Cγ = ϵ for γ ∈ {α, β}, the trace τ does not
contain communication on (CN(σ(α))∪CN(σ(β)))\(CN(α)∪CN(β)) ⊆ Cα∪Cβ ,
which justifies the equality (⋆) in the following:

τ ↓ (α ∥ β) = (τ ↓ (σ(α) ∥ σ(β))) ↓ (α ∥ β) (⋆)
= τ ↓ (σ(α) ∥ σ(β)) = τ .

Conversely, let (v, τ ↓ γ, oγ) ∈ I[[σ(γ)]] for γ ∈ {α, β} and τ ↓ (α ∥ β) = τ .
Moreover, let α = β and β = α. Then

τ ↓ σ(γ) = (τ ↓ (α ∥ β)) ↓ σ(γ) = τ ↓
((
CN(α) ∪ CN(β)

)
∩ CN(σ(γ))

)
,

which equals τ ↓ (CN(γ) ∪ (CN(γ) ∩ CN(σ(γ)))) because CN(γ) ⊆ CN(σ(γ)) by
equation (4). Since there is no communication along Cγ = CN(σ(γ)) \CN(γ) by
Cγ∩CN(σ(γ)) = ∅ again, there is also non along (CN(γ)∩CN(σ(γ)))\CN(γ) ⊆ Cγ .
Hence, τ ↓ (CN(γ) ∪ (CN(γ) ∩ CN(σ(γ)))) = τ ↓ γ such that τ ↓ σ(γ) = τ ↓ γ,
which implies (v, τ ↓ σ(γ), oγ) ∈ I[[σ(γ)]]. Moreover, τ ↓ (α ∥ β) = τ implies
τ ↓ (σ(α) ∥ σ(β)) = (τ ↓ (α ∥ β)) ↓ (σ(α) ∥ σ(β)), which equals τ ↓ (α ∥ β) = τ
since CN(σ(α) ∥ σ(β)) ⊇ CN(α ∥ β). ⊓⊔

Proof (of Lemma17). The proof generalizes the substitution lemma proof for
dGL [31, Lemma 16 and Lemma 17] to dLCHP, where taboos contain channels
and the parallel context needs to be respected. The proof is by lexicographic
mutual structural induction, i.e., along the lexicographic order ⊏ on tuples (σ, π)
of substitutions σ and formula-program expressions π defined by (σ′, π′) ⊏ (σ, π)
if σ′ ⊏ σ or (σ′ = σ but π′ ⊏ π), where ⊏ on substitutions and formula-program
expressions, respectively, denotes the (mutual) structural order, simultaneously
for all U , v, and w.

First, consider the formula cases. Therefore, let v be any U -variation of w.

1. Iv ⊨ σU (e1 ∼ e2) iff Iv ⊨ σU (e1) ∼ σU (e2) iff Iv[[σU (e1)]] ∼ Iv[[σU (e2)]],
which is by Lemma16 equivalent to σ∗

wIv[[e1]] ∼ σ∗
wIv[[e2]], iff σ

∗
wIv ⊨ e1 ∼ e2

2. In case p(Y, e), let d = Iv[[σU (e ↓ Y )]]. Then Iv ⊨ σU (p(e ↓ Y )) iff Iv ⊨
{· 7→ σU (e ↓ Y )}∅(σp(·)), by IH, iff Id· v ⊨ σp(·) because · has arity 0 and p
has arity 1 such that {· 7→ σU (e ↓ Y )}∅ ⊏ σ. Since σU (p(e ↓ Y )) is defined,
FV(σp(·))∩U = ∅ and CN(σp(·))∩U = ∅. By premise, v is a U -variation of w,
i.e., v↓(U∁∩Ω) = w↓(U∁∩Ω) on U∁∩V . Thus, v↓CN(σp(·)) = w↓CN(σp(·))
on FV(σp(·)) such that (Id· v ⊨ σp(·) iff Id· w ⊨ σp(·)) by coincidence (see
Lemma11). Finally, Id· w ⊨ σp(·), by Def. 14, iff (d) ∈ σ∗

wI(p), by IH, iff
(σ∗
wIv[[e ↓ Y ]]) ∈ σ∗

wI(p) iff σ
∗
wIv ⊨ p(e ↓ Y ) because e ↓ Y ⊏ p(e ↓ Y ).

3. Iv ⊨ σU (¬ϕ) iff Iv ⊨ ¬σU (ϕ) iff Iv ⊭ σU (ϕ), by IH, iff σ∗
wIv ⊭ ϕ iff σ∗

wIv ⊨ ¬ϕ
4. Iv ⊨ σU (φ ∧ ψ) iff Iv ⊨ σU (φ) ∧ σU (ψ) iff (Iv ⊨ σU (φ) and Iv ⊨ σU (ψ)), by

IH, iff (σ∗
wIv ⊨ φ and σ∗

wIv ⊨ ψ) iff σ∗
wIv ⊨ φ ∧ ψ
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5. Observe that vdz is a (U∪{z})-variation of w for all d ∈ type(z) since v is a U -
variation of w. Now, Iv ⊨ σU (∀z φ) iff Iv ⊨ ∀z σU∪{z}(φ) iff Ivdz ⊨ σU∪{z}(φ)
for all d ∈ type(z), by IH, iff σ∗

wIv
d
z ⊨ φ for all d ∈ type(z) iff σ∗

wIv ⊨ ∀z φ.
6. Let Iv ⊨ σU ([α]ψ). Then Iv ⊨ [σU,∅Z (α)]σZ(ψ). To prove σ∗

wIv ⊨ [α]ψ, let

(v, τ, o) ∈ σ∗
wI[[α]] with o ̸= ⊥. By the mutual IH, (v, τ, o) ∈ I[[σU,∅Z (α)]]

because v is a (U ∪ ∅)-variation of w. Hence, Io · τ ⊨ σZ(ψ) by the premise.
Finally, by IH, σ∗

wIo · τ ⊨ ψ because o · τ is a Z-variation of w by Lemma30.

Conversely, let σ∗
wIv ⊨ [α]ψ. To prove Iv ⊨ σU ([α]ψ), recall σU ([α]ψ) =

[σU,∅Z (α)]σZ(ψ) and let (v, τ, o) ∈ I[[σU,∅Z (α)]] with o ̸= ⊥. By the mutual IH,
(v, τ, o) ∈ σ∗

wI[[α]] because v is a (U∪∅)-variation of w. Therefore, σ∗
wIo·τ ⊨ ψ

by the premise. Finally, by IH, Io · τ ⊨ σZ(ψ) because o · τ is a Z-variation
of w by Lemma30.

7. Let Iv ⊨ σU ([α]{A,C}ψ). Then Iv ⊨ [σU,∅Z (α)]{σZ(A),σZ(C)}σ
Z(ψ). To prove

σ∗
wIv ⊨ [α]{A,C}ψ, let (v, τ, o) ∈ σ∗

wI[[α]]. By the mutual IH, (v, τ, o) ∈
I[[σU,∅Z (α)]] because v is a (U∪∅)-variation of w. Since variation is monotone in

the variation set, v is a (U∪BV(σU,∅Z (α))∪CN(σU,∅Z (α)))-variation of w. More-

over, by the bound effect property (Lemma10), we have τ ↓CN(σU,∅Z (α))∁ = ϵ,

which implies that v ·τ ′ is a (U∪BV(σU,∅Z (α))∪CN(σU,∅Z (α)))-variation of w for
all τ ′ ⪯ τ . Hence, by Lemma13, v · τ ′ is a Z-variation of w for all τ ′ ⪯ τ . For
(commit), assume {σ∗

wIv · τ ′ | τ ′ ≺ τ} ⊨ A. By IH, {Iv · τ ′ | τ ′ ≺ τ} ⊨ σZ(A).
Hence, Iv · τ ⊨ σZ(C) by premise, which implies σ∗

wIv · τ ⊨ C by IH
again. For (post), assume o ̸= ⊥ and {σ∗

wIv · τ ′ | τ ′ ⪯ τ} ⊨ A. By IH,
{Iv · τ ′ | τ ′ ⪯ τ} ⊨ σZ(A). Hence, Io · τ ⊨ σZ(ψ) by premise, which implies
σ∗
wIo · τ ⊨ ψ by IH again because o · τ is a Z-variation of w by Lemma30.

Conversely, let σ∗
wIv ⊨ [α]{A,C}ψ. To prove Iv ⊨ σU ([α]{A,C}ψ), recall that

σU ([α]{A,C}ψ) = [σU,∅Z (α)]{σZ(A),σZ(C)}σ
Z(ψ) and let (v, τ, w) ∈ I[[σU,∅Z (α)]].

By the mutual IH, (v, τ, w) ∈ σ∗
wI[[α]] because v is a (U ∪ ∅)-variation of w.

As conversely, v ·τ ′ is a Z-variation of w for all τ ′ ⪯ τ . For (commit), assume
{Iv ·τ ′ | τ ′ ≺ τ} ⊨ σZ(A). By IH {σ∗

wIv ·τ ′ | τ ′ ≺ τ} ⊨ A. Hence, σ∗
wIv ·τ ⊨ C

by premise, which implies Iv · τ ⊨ σZ(C) by IH again. For (post), assume
o ̸= ⊥ and {Iv · τ ′ | τ ′ ⪯ A} ⊨ σZ(A). By IH {σ∗

wIv · τ ′ | τ ′ ⪯ τ} ⊨ A. Hence,
σ∗
wIo · τ ⊨ ψ by premise, which implies Io · τ ⊨ σZ(ψ) by IH again because
o · τ is a Z-variation of w by Lemma30.

Secondly, consider the program cases. Therefore, let v be any (U ∪ W )-
variation of w. W.l.o.g. τ = ϵ and o ̸= ⊥ in the cases of non-communicating
atomic programs α below because τ = ϵ for all (v, τ, o) ∈ I[[α]] if α is an atomic

program but not a communication primitive and ((v, ϵ,⊥) ∈ I[[σU,WZ (α)]] iff
(v, ϵ,⊥) ∈ σ∗

wI[[α]]) by totality.

1. Since σU,WZ (a(|Y, z̄|)) is defined, BV(σa) ⊆ z̄ and CN(σa) ⊆ Y . Hence, the

equivalence (v, τ, o) ∈ I[[σU,WZ (a(|Y, z̄|))]] iff (v, τ, o) ∈ I[[σa]] is defined, where
the latter is by Def. 14 equivalent to (v, τ, o) ∈ σ∗

wI(a(|Y, z̄|)) iff (v, τ, o) ∈
σ∗
wI[[a(|Y, z̄|)]].
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2. (v, ϵ, o) ∈ I[[σU,WZ (x := θ)]] iff (v, ϵ, o) ∈ I[[x := σU∪W (θ)]] iff o = vdx, where
d = Iv[[σU∪W (θ)]], by Lemma16, iff o = vdx, where d = σ∗

wIv[[θ]] iff (v, ϵ, o) ∈
σ∗
wI[[x := θ]]

3. (v, ϵ, o) ∈ I[[σU (x := ∗)]] iff o = vdx, where d ∈ R, iff (v, ϵ, o) ∈ σ∗
wI[[x := ∗]]

4. (v, ϵ, o) ∈ I[[σU,WZ ({x′ = θ&χ})]] iff (v, ϵ, o) ∈ I[[{x′ = σU∪W (θ)&σU∪W (χ)}]]
iff a solution φ : [0, s] → S from v to o exists with Iφ(ζ) ⊨ µ′ = 1 ∧ x′ =
σU∪W (θ) ∧ σU∪W (χ) and v = φ(ζ) on {x, x′, µ, µ′}∁ for all ζ ∈ [0, s] and

if φ(ζ)(z′) = dφ(t)(z)
dt (z) for z ∈ {µ, x}. Since φ(ζ) is a (U ∪ {x, x′, µ, µ′})-

variation of w, we obtain σ∗
wIφ(ζ) ⊨ µ′ = 1 ∧ x′ = θ by Lemma16 and

σ∗
wIφ(ζ) ⊨ χ by the mutual IH. Thus, (v, ϵ, o) ∈ I[[σU,WZ ({x′ = θ & χ})]] iff

(v, τ, o) ∈ σ∗
wI[[{x′ = θ & χ}]].

5. (v, ϵ, o) ∈ I[[σU,WZ (?χ)]] iff (v, ϵ, o) ∈ I[[?σU∪W (χ)]] iff o = v and Iv ⊨
σU∪W (χ), by the mutual IH, iff o = v and σ∗

wIv ⊨ χ iff (v, ϵ, o) ∈ σ∗
wI[[?χ]]

6. (v, τ, o) ∈ I[[σU,WZ (ch(h)!θ)]] iff (v, τ, o) ∈ I[[ch(h)!σU∪W (θ)]] iff (τ, o) ⪯
(⟨h, ch, d, v(µ)⟩, v) with d = Iv[[σU∪W (θ)]], which by Lemma16, is equivalent
to (τ, o) ⪯ (⟨h, ch, d∗, v(µ)⟩, v) with d∗ = σ∗

wIv[[θ]] iff (v, τ, o) ∈ σ∗
wI[[ch(h)!θ]]

7. (v, τ, o) ∈ I[[σU,WZ (ch(h)?x)]] iff (v, τ, o) ∈ I[[ch(h)?x]], which is equivalent to
(τ, o) ⪯ (⟨h, ch, d, v(µ)⟩, vdx) with d ∈ R iff (v, τ, o) ∈ σ∗

wI[[ch(h)?x]]
8. (v, τ, o) ∈ I[[σU,WZ (α ∪ β)]] iff (v, τ, o) ∈ I[[σU,WZ1

(α) ∪ σU,WZ2
(β)]], where Z =

Z1 ∪ Z2, iff (v, τ, o) ∈ I[[σU,WZ1
(α)]] or (v, τ, o) ∈ I[[σU,WZ2

(β)]], which by IH, is
equivalent to (v, τ, o) ∈ σ∗

wI[[α]] or (v, τ, o) ∈ σ∗
wI[[β]] iff (v, τ, o) ∈ σ∗

wI[[α∪β]]
9. Let (v, τ, o) ∈ I[[σU,WZ (α;β)]]. Since σU,WZ (α;β) ≡ σU,WZ0

(α);σZ0,W
Z (β), there

is (v, τ, o) ∈ (I[[σU,WZ0
(α)]])⊥ or (v, τ, o) ∈ I[[σU,WZ0

(α)]] ▷ I[[σZ0,W
Z (β)]]. In

case (v, τ, o) ∈ (I[[σU,WZ0
(α)]])⊥, there is (v, τ, o) ∈ (σ∗

wI[[α]])⊥ ⊆ σ∗
wI[[α;β]]

by IH. Otherwise, (v, τ, o) ∈ I[[σU,WZ0
(α)]] ▷ I[[σZ0,W

Z (β)]], so computations

(v, τ1, u) ∈ I[[σU,WZ0
(α)]] and (u, τ2, o) ∈ I[[σZ0,W

Z (β)]] exist with τ = τ1 · τ2.
By IH, (v, τ1, u) ∈ σ∗

wI[[α]]. Since v is a (U ∪W )-variation of w and v = u

on BV(σU,WZ0
(α))∁ by the bound effect property, we obtain w = v = u on

(U ∪W )∁ ∩BV(σU,WZ0
(α))∁ =W ∁ ∩ (U ∪BV(σU,WZ0

(α)))∁. By Lemma13, Z0 ⊇
U ∪BV(σU,WZ0

(α)) such that w = u on W ∁∩Z∁
0 = (W ∪Z0)

∁, i.e., u is a (Z0∪
W )-variation of w such that IH is applicable on (u, τ2, o) ∈ I[[σZ0∪W (β)]].
Therefore, by IH, (u, τ2, o) ∈ σ∗

wI[[β]]. Finally, (v, τ, o) ∈ σ∗
wI[[α]] ▷ σ

∗
wI[[β]] ⊆

σ∗
wI[[α;β]].

Conversely, let (v, τ, o) ∈ σ∗
wI[[α;β]]. Then (v, τ, o) ∈ (σ∗

wI[[α]])⊥ or (v, τ, o) ∈
σ∗
wI[[α]]▷σ

∗
wI[[β]]. If (v, τ, o) ∈ (σ∗

wI[[α]])⊥, there is (v, τ, o) ∈ (I[[σU,WZ0
(α)]])⊥ ⊆

I[[σU,WZ0
(α);σZ0,W

Z (β)]] = I[[σU,WZ (α;β)]] by IH. Otherwise, (v, τ, o) ∈ σ∗
wI[[α]]▷

σ∗
wI[[β]], so computations (v, τ1, u) ∈ σ∗

wI[[α]] and (u, τ2, o) ∈ σ∗
wI[[β]] exist

such that τ = τ1 · τ2. By IH, (v, τ1, u) ∈ I[[σU,WZ0
(α)]]. As conversely, u is a

(Z0 ∪W )-variation of w such that IH is applicable on (u, τ2, o) ∈ σ∗
wI[[β]].

Therefore, by IH, (u, τ2, o) ∈ I[[σZ0,W
Z (β)]]. Finally, (v, τ, o) ∈ I[[σU,WZ0

(α)]] ▷

I[[σZ0,W
Z (β)]] ⊆ I[[σU,WZ0

(α);σZ0,W
Z (β)]] = I[[σU,WZ (α;β)]].

10. In case σU,WZ (α∗), the output taboo Z ⊇ U of σU,WZ (α) is added to U dur-
ing an additional first pass over α as indicated by the fixpoint notation
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σZ,WZ (α). Since v is a (U ∪W )-variation of w and variation is monotone in

the variation set, v is a (Z ∪W )-variation of w. Now, (v, τ, o) ∈ I[[σU,WZ (α∗)]]

iff (v, τ, o) ∈ I[[σZ,WZ (α)∗]] iff (v, τ, o) ∈ I[[(σZ,WZ (α))n]] for some n ∈ N iff

(v, τ, o) ∈ I[[σZ,WZ (αn)]] for some n ∈ N, by IH, iff (v, τ, o) ∈ σ∗
wI[[α

n]] for
some n ∈ N iff (v, τ, o) ∈ σ∗

wI[[α
∗]].

11. In case α ∥ β, we have σU,WZ (α ∥ β) ≡ σ(α) ∥ σ(β), where σ(α) ≡ σ
U,WU,β

Z1
(α),

and σ(β) ≡ σ
U,WU,α

Z2
(β), and WU,γ ≡W ∪ (BV(σU,W (γ)) \ ({µ, µ′} ∪ VT )) for

any program γ, and Z = Z1 ∪ Z2. Since v is a (U ∪W )-variation of w, by
monotony in the variation set, v is a (U ∪WU,γ)-variation of w for any γ.
We define explicit merging o1 ⊕γ o2 to be o1 on BV(γ) and o2 elsewhere.

Now, (v, τ, o) ∈ I[[σU,WZ (α ∥ β)]] iff (v, τ ↓ σ(γ), oγ) ∈ I[[σ(γ)]] for γ ∈ {α, β},
and o = oα ⊕σ(α) oβ , and oα = oβ on {µ, µ′}, and τ = τ ↓ (σ(α) ∥ σ(β)),
iff, by Lemma31 and the argument about merging ⊕ below, (v, τ ↓ γ, oγ) ∈
σ∗
wI[[σ(γ)]] for γ ∈ {α, β}, and o = oα⊕α oβ , and oα = oβ on {µ, µ′}, and τ =
τ ↓ (α ∥ β) iff, by IH, (v, τ ↓γ, oγ) ∈ σ∗

wI[[γ]] for γ ∈ {α, β}, and o = oα⊕α oβ ,
and oα = oβ on {µ, µ′}, and τ = τ ↓ (α ∥ β) iff (v, τ, o) ∈ σ∗

wI[[α ∥ β]].
Finally, oα ⊕α oβ = oα ⊕σ(α) oβ has been left open above. On BV(σ(α)), we

have oα ⊕α oβ = oα = oα ⊕σ(α) oβ since BV(σ(α)) ⊆ BV(α). On BV(σ(α))∁,

first consider BV(σ(α))∁ ∩ BV(α)∁, where oα ⊕α oβ = oβ = oα ⊕σ(α) oβ .
Now, consider X = BV(σ(α))∁ ∩ BV(α). Further, let Xobs = {z | v(z) ̸=
oα(z) ∨ v(z) ̸= oβ(z)}. On X ∩X∁

obs, we have oα ⊕σ(α) oβ = v = oα ⊕α oβ .
Otherwise, if z ∈ X ∩Xobs, then z ∈ BV(α) but z ̸∈ VT by Lemma10. Then
either z ∈ VR \ {µ, µ′} such that z ̸∈ BV(β) by well-formedness of α ∥ β
or z ∈ {µ, µ′} such that the programs must agree upon the value of z in
their final states. If z ̸∈ BV(β), then v(z) ̸= oα(z) since z ∈ Xobs such that
z ∈ BV(σ(α)) in contradiction to z ∈ X. Therefore, z ̸∈ X ∩Xobs such that
X ∩Xobs = ∅. Otherwise, if z ∈ {µ, µ′}, the final states agree upon the value
of z. Thus, oα ⊕α oβ = oα ⊕σ(α) oβ on {µ, µ′}. ⊓⊔

Once the uniform substitution lemmas from Section 3.1 are proven, the sound-
ness proof of uniform substitution (Theorem18) is easy:

Proof (of Theorem18). Let the premise ϕ be valid, i.e., Jṽ ⊨ ϕ for all pairs Jṽ
of interpretation and state. For proving the conclusion, let Iv be any pair of
interpretation and state. By validity of the premise, thus σ∗

vIv ⊨ ϕ. Since v is a
∅-variation of v, Lemma17 implies Iv ⊨ σ∅(ϕ). ⊓⊔

Besides the instantiation of axioms by US, Theorem32 even allows instan-
tiation of axiomatic proof rules using uniform substitution. The rule must be
locally sound, i.e., validity of the premises in any interpretation implies validity
of the conclusion under this interpretation.

Theorem 32 (Sound uniform substitution for rules). If the inference INF
is locally sound, so is the inference US-INF:

ϕ1 . . . ϕk
ψ

(INF)
σV ∪Ω(ϕ1) . . . σ

V ∪Ω(ϕk)

σV ∪Ω(ψ)
(US-INF)
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Proof. Assume that the inference INF is locally sound. To prove that the infer-
ence US-INF is locally sound, let I be any interpretation such that I ⊨ σV ∪Ω(ϕj)
for 1 ≤ j ≤ k, i.e., Iv ⊨ σV ∪Ω(ϕj) for all v and j. Since v is a (V ∪Ω)-variation
of any w, by Lemma17, σ∗

wI ⊨ ϕj for all j. Thus, σ∗
wI ⊨ ψ by local soundness of

INF. Finally, I ⊨ σV ∪Ω(ψ) by Lemma17 again. ⊓⊔

Lemma34 prepares the proof of Proposition 19 that uniform substitution
preserves well-formedness proving that it respects the parallel context. As well-
formedness is defined in terms of the static semantics, the proofs of Lemma34
and Proposition 19 make use of the uniform substitution lemmas via Lemma33.

Lemma 33. For formula ϕ and program α, we have

1. FV(σU (ϕ)) ⊆ FV(ϕ) ∪ U∁, and

2. FV(σU,WZ (α)) ⊆ FV(α) ∪ (U ∪W )∁, and

3. BV(σU,WZ (α)) ⊆ BV(α)

if the substitutions σU (ϕ) and σU,WZ (α) are defined.

Proof. For 1, let z ∈ FV(σU (ϕ)) but assume z ̸∈ U∁. By definition of FV(ϕ), there
are I, v, and ṽ with v = ṽ on {z}∁ and Iv[[σU (ϕ)]] ̸= Iṽ[[σU (ϕ)]]. Since z ∈ U ,
state ṽ is a U -variation of v. By Lemma17, σ∗

vIv[[ϕ]] ̸= σ∗
vIṽ[[ϕ]]. Therefore,

z ∈ FV(ϕ).

For item 2, let z ∈ FV(σU,WZ (α)) but assume z ̸∈ (U ∪W )∁. By definition of

FV(α), there are I, v, ṽ, τ, w such that v = ṽ on {z}∁ and (v, τ, w) ∈ I[[σU,WZ (α)]]

but there is no (ṽ, τ̃ , w̃) ∈ I[[σU,WZ (α)]] such that τ̃ = τ and w̃ = w on {z}∁. By
Lemma17, (v, τ, w) ∈ σ∗

vI[[α]]. Since x ∈ U ∪W , state ṽ is a (U ∪W )-variation
of v. Hence, there is no (ṽ, τ̃ , w̃) ∈ σ∗

vI[[α]] such that τ̃ = τ and w̃ = w on {z}∁
because otherwise, (ṽ, τ̃ , w̃) ∈ I[[σU,WZ (α)]] by Lemma17. In summary, z ∈ FV(α).

For item 3, let z ∈ BV(σU,WZ (α)). Then I and (v, τ, w) ∈ I[[σU,WZ (α)]] exist
such that (w · τ)(z) ̸= v(z). By Lemma17, (v, τ, w) ∈ σ∗

vI[[α]]. Hence, z ∈ BV(α).
⊓⊔

Lemma 34. If a program α respects the parallel context W , i.e., V(α) ∩W ⊆
{µ, µ′}∪VT , the result of substitution σU,WZ (α), if defined, respects the contextW ,

too, i.e., V(σ
U,W
Z (α)) ∩W ⊆ {µ, µ′} ∪ VT .

Proof. Let V(α) ∩W ⊆ {µ, µ′} ∪ VT . Then V(σ
U,W
Z (α)) ∩W = (FV(σU,WZ (α)) ∪

BV(σU,WZ (α))) ∩ W , which is by Lemma33 smaller or equal to (FV(α) ∪ (U ∪
W )∁ ∪BV(α))∩W = (FV(α)∪BV(α))∩W = V(α)∩W , which is by the premise
smaller or equal to {µ, µ′} ∪ VT . ⊓⊔

The proof of Proposition 19 shows that uniform substitution (see Fig. 2) al-
ready preserves the stronger well-formedness condition (V(α)∩BV(β))∪ (V(β)∩
BV(α)) ⊆ {µ, µ′} ∪ VT for programs α, β from previous work [6]. Importantly,
note that the weaker well-formedness condition BV(α)∩BV(β) ⊆ {µ, µ′}∪VT as
imposed on programs in this paper, is still sufficient to preserve itself and that
the proofs of Lemma34 and Proposition 19 can be adjusted accordingly.
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Proof (of Proposition 19). The proof is by simultaneous induction on the struc-
ture of programs and formulas. It uses the abbreviation VG = {µ, µ′} ∪ VT .

The only program with context-sensitive syntax is parallel composition, thus
atomic programs are trivially well-formed and other compound programs are
well-formed since by IH, their subprograms are well-formed.

Now, let α ∥ β be well-formed. Then (V(α) ∩ BV(β)) ∪ (V(β) ∩ BV(α)) ⊆ VG.

Moreover, let σU,WZ (α ∥ β) be defined. Thus, σ
U,WU,β

Z1
(α) and σ

U,WU,α

Z2
(β), where

WU,α = W ∪ (BV(σU,W (α)) \ VG) and WU,β = W ∪ (BV(σU,W (β)) \ VG), are
defined, and by IH, they are well-formed. By Lemma34, VG ⊇ V(σ

U,WU,β

Z1
(α)) ∩

WU,β ⊇ V(σ
U,WU,β

Z1
(α)) ∩ (BV(σU,W (β)) \ VG), which equals V(σ

U,WU,β

Z1
(α)) ∩

(BV(σU,WU,α(β)) \ VG) since the parallel context does not influence the sub-

stitution result if it is defined. Thus, VG ⊇ V(σ
U,WU,β

Z1
(α)) ∩ BV(σU,WU,α(β)).

Accordingly, VG ⊇ V(σ
U,WU,α

Z2
(β)) ∩ BV(σU,WU,β (α)) by Lemma34. Since the

context-sensitive side conditions are respected, σU,WZ (α ∥ β) is well-formed as
parallel composition of well-formed programs.

For formulas, the ac-box is the only interesting case. Let [α]{A,C}ψ be well-
formed. Then (FV(A) ∪ FV(C)) ∩ BV(α) ⊆ VT . Moreover, let σU ([α]{A,C}ψ) be

defined. For χ ∈ {A,C}, we obtain by Lemma33 that FV(σZ(χ))∩BV(σU,∅Z (α)) ⊆
(FV(χ) ∪ Z∁) ∩ BV(σU,∅Z (α)), which is by Lemma13 smaller or equal to(

FV(χ) ∪
(
U ∪ BV(σU,∅Z (α)) ∪ CN(σU,∅Z (α))

)∁) ∩ BV(σU,∅Z (α)),

which equals FV(χ) ∩ BV(σU,∅Z (α)), which is by Lemma33 smaller or equal to
FV(χ) ∩ BV(α), which is smaller or equal to VT by the premise. ⊓⊔

C Details of the Axiomatic Calculus

This appendix reports a soundness proof for dLCHP’s axiomatization (see Fig. 3).
Moreover, Corollary 35 gives derivations of ac-monotonicity M[·]AC and distribu-
tion of boxes over conjuncts []AC∧. Finally, algebraic laws for reasoning about
trace terms [6] are lifted to uniform substitution.

Proof (of Theorem21). Since the axioms of Fig. 3 are instances of their schematic
versions (except for KAC and []WA), they are sound as the schematic axioms are
sound [6]. In particular, note that axioms [ϵ]AC and [∥ ]AC internalize the side
conditions of the schematic calculus correctly. For the newly added axiom KAC

and the changed axiom []WA, soundness proofs are provided below. Recall that
Rj ≡ rj(Y, h̄), and Qj ≡ qj(Y, h̄), and Pj ≡ pj(Y, z̄).

KAC: Let Iv ⊨ [a]{R,Q1→Q2}(P1 → P2), and Iv ⊨ [a]{R,Q1}P1, and let (v, τ, w) ∈
I[[a]]. For (commit), assume {Iv · τ ′ | τ ′ ≺ τ} ⊨ R. Then Iv · τ ⊨ Q1 → Q2 and
Iv·τ ⊨ Q1, thus Iv·τ ⊨ Q2. For (post), assume w ̸= ⊥ and {Iv·τ ′ | τ ′ ⪯ τ} ⊨ R.
Then Iv · τ ⊨ P1 → P2 and Iv · τ ⊨ P1 such that Iv · τ ⊨ P2.
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[]WA: Let Iv ⊨ [a]{T,WA}T, where WA ≡ (R ∧ Q1 → R2) ∧ (R ∧ Q2 → R1),
and let Iv ⊨ Φ for Φ ≡ [a]{R1∧R2,Q1∧Q2}P and (v, τ, w) ∈ I[[a]]. By induction
on the length of τ , we simultaneously prove Iv ⊨ [a]{R,Q1∧Q2}P, and that
{Iv · τ ′ | τ ′ ≺ τ} ⊨ R implies {Iv · τ ′ | τ ′ ≺ τ} ⊨ R1 ∧ R2:
1. |τ | = 0, then Iv ⊨ Φ implies Iv ⊨ Q1∧Q2 by axiomW[]AC. Hence, (commit)

holds because τ = ϵ. For (post), assume w ̸= ⊥ and {Iv · τ ′ | τ ′ ⪯ τ} ⊨ R.
By Iv ⊨ [a]{T,WA}T and W[]AC again, we obtain Iv ⊨ WA. Then {Iv · τ ′ |
τ ′ ⪯ τ} ⊨ R1∧R2 because Iv ⊨ WA, and Iv ⊨ R, and Iv ⊨ Q1∧Q2. Thus,
Iw · τ ⊨ P by the premise Iv ⊨ Φ. Note that {Iv · τ ′ | τ ′ ≺ τ} ⊨ R1 ∧R2 is
trivially fulfilled since {Iv · τ ′ | τ ′ ≺ τ} = ∅.

2. |τ | > 0, then τ = τ0 · ρ with |ρ| = 1. For (commit), assume {Iv · τ ′ | τ ′ ≺
τ} ⊨ R. Then {Iv · τ ′ | τ ′ ⪯ τ0} ⊨ R, which implies {Iv · τ ′ | τ ′ ≺ τ0} ⊨
R1 ∧R2 by IH. Since (v, τ0,⊥) ∈ I[[a]] by prefix-closedness of the program
semantics, we obtain Iv · τ0 ⊨ Q1 ∧Q2 by Iv ⊨ Φ. Moreover, Iv · τ0 ⊨ WA

by Iv ⊨ [a]{T,WA}T. Hence, Iv · τ0 ⊨ R1 ∧ R2 since Iv · τ0 ⊨ WA, and
Iv · τ0 ⊨ R, and Iv · τ0 ⊨ Q1 ∧ Q2. Thus, {Iv · τ ′ | τ ′ ≺ τ} ⊨ R1 ∧ R2.
Finally, Iv · τ ⊨ Q1 ∧ Q2 by Iv ⊨ Φ again. For (post), assume w ̸= ⊥
and {Iv · τ ′ | τ ′ ⪯ τ} ⊨ R. Then {Iv · τ ′ | τ ′ ≺ τ} ⊨ R, which implies
{Iv · τ ′ | τ ′ ≺ τ} ⊨ R1 ∧ R2 and Iv · τ ⊨ Q1 ∧Q2 as in case (commit). By
(v, τ, w) ∈ I[[a]] and Iv ⊨ [a]{T,WA}T, we obtain Iv · τ ⊨ WA, which implies
using Iv · τ ⊨ R and Iv · τ ⊨ Q1 ∧Q2 that Iv · τ ⊨ R1 ∧ R2. In summary,
{Iv · τ ′ | τ ′ ⪯ τ} ⊨ R1 ∧ R2, which implies Iw · τ ⊨ P by Iv ⊨ Φ.

Corollary 35. The proof rule M[·]AC of ac-monotonicity and the axiom []AC∧
of distribution of conjuncts in commitments and postconditions over boxes [6]
can be derived. Let Rj ≡ rj(Y, h̄), and Qj ≡ qj(Y, h̄), and Pj ≡ pj(Y, z̄).

R2 → R1 Q1 → Q2 P1 → P2
M[·]AC

[a]{R1,Q1}P1 → [a]{R2,Q2}P2

[a]{R,Q1∧Q2}(P1 ∧ P2) ↔ [a]{R,Q1}P1 ∧ [a]{R,Q2}P2 []AC∧

Proof. The proof is by derivation in the calculus. The sequent-style deduction is
justified since sequent-style rules can be derived in a Hoare-style calculus.

M[·]AC: Let ψ ≡ (R2 ∧ Q2 → T) ∧ (R2 ∧ T → R1) in the following, where Prop
marks propositional reasoning.

R2 → R1
Prop

T ∧ ψ
GAC

[a]{T,ψ}T
WL

[a]{R1,Q1}P1 → [a]{T,ψ}T

Q1 → Q2 P1 → P2
∧R

(Q1 → Q2) ∧ (P1 → P2)
GAC

[a]{R1,Q1→Q2}(P1 → P2)
KAC

[a]{R1,Q1}P1 → [a]{R1,Q2}P2
∧T

[a]{R1,Q1}P1 → [a]{R1∧T,Q2∧T}P2
∧R

[a]{R1,Q1}P1 → [a]{T,ψ}T ∧ [a]{R1∧T,Q2∧T}P2
[]WA

[a]{R1,Q1}P1 → [a]{R2,Q2∧T}P2
∧T

[a]{R1,Q1}P1 → [a]{R2,Q2}P2
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[]AC∧: The implication (→) can be easily derived using rule M[·]AC. The other
direction is derived below, where Prop marks propositional reasoning. The
proof uses currying Curry, which can can be easily derived by Prop.

∗
Prop

Q1 → (Q2 → Q1 ∧Q2)
∗

Prop
P1 → (P2 → P1 ∧ P2)

M[·]AC
[a]{R,Q1}P1 → [a]{R,Q2→Q1∧Q2}(P2 → P1 ∧ P2)

KAC

[a]{R,Q1}P1 → ([a]{R,Q2}P2 → [a]{R,Q1∧Q2}(P1 ∧ P2))
Curry

[a]{R,Q1}P1 ∧ [a]{R,Q2}P2 → [a]{R,Q1∧Q2}(P1 ∧ P2)
⊓⊔

Algebra of Traces. Fig. 4 gives simple algebraic laws for step-wise simplifica-
tion of trace terms. In contrast to the schematic algebra of traces in our previous
report [6], the laws in Fig. 4 are flat axioms without side conditions. The axioms
use that a symbolic representation of (co)finite sets can be given and finitely
axiomatized, especially in axiom ↓∩, axiom ↓∈, and axiom ↓̸∈.

· ↓ (fT · gT ) ↓ Y = fT ↓ Y · gT ↓ Y
↓∩ (fT ↓ Y ′) ↓ Y = fT ↓ (Y ′ ∩ Y )

ϵ↓ ϵ ↓ Y = ϵ

val val(⟨ch, fR, gR⟩) = fR

time time(⟨ch, fR, gR⟩) = gR

chan chan(⟨ch, fR, gR⟩) = ch

·A (fT
1 · fT

2 ) · fT
3 = fT

1 · (fT
2 · fT

3 )

·N fT · ϵ = fT = ϵ · fT

↓∈ ch ∈ Y → ⟨ch, fR, gR⟩ ↓ Y = ⟨ch, fR, gR⟩
↓̸∈ ch ̸∈ Y → ⟨ch, fR, gR⟩ ↓ Y = ϵ

|·|≥0 |fT | ≥ 0

|·|+1 |fT · ⟨ch, fR, gR⟩| = |fT |+ 1

acc= |fT | = fN → (fT · ⟨ch, fR, gR⟩)[fN] = ⟨ch, fR, gR⟩
acc> |fT | > fN → (fT · ⟨ch, fR, gR⟩)[fN] = fT [fN]

Fig. 4: Axiomatic algebra of traces

Axiomatization of (Co)finite Sets. Strictly speaking, the calculus in Fig. 3
still has schematic occurrences of (co)finite sets. As suggested by Remark 20,
this is easily fixed using symbolic (co)finite sets together with a non-schematic
axiomatization. The class C(E1, . . . , En) of (co)finite sets over the (co)finite sets
E1, . . . , En of atoms, has the following syntax

C1, C2 ::= {ei} | ⊥Set | ⊤1
Set | . . . | ⊤nSet | C1 ∩ C2 | C1 \ C2,

where ei ∈ Ei is any atom for any 1 ≤ i ≤ n, symbol ⊥Set represents the empty
set, ⊤iSet represents all atoms of Ei for 1 ≤ i ≤ n, and ∩ and \ are set intersection
and set difference, respectively. Other operators like union ∪ can be defined. The
class occurring in dLCHP is C(Ω, VR, VN, VT ).

For C(E1, . . . , En), any C(S1, . . . , Sk) with {S1, . . . , Sk} ⊆ {E1, . . . En} forms
a boolean algebra with binary operator ∩, neutral element⊤Set = ⊤1

Set∪. . .∪⊤kSet
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w.r.t. ∩, where⊤iSet represents Si, and the unary operation⊤Set\· of parameter ·.
Laws for the boolean algebra can be adopted to axiomatize C(S1, . . . , Sk).

In formulas, (co)finite sets can be compared C1 = C2, and we include the
element relation e ∈ Y . Axioms for the element relation over (co)finite sets unroll
the relation into a finite conjunction as follows:

¬e ∈ ⊥Set e ∈ ({ẽ} ∩ C) ↔ e = ẽ ∧ e ∈ C

ei ∈ ⊤iSet e ∈ (C1 \ C2) ↔ e ∈ C1 ∧ ¬e ∈ C2

ei ̸∈ ⊤jSet for i ̸= j

Equality is axiomatized in terms of the extensionality principle as usual:

C1 = C2 ↔ ∀e (e ∈ C1 ↔ e ∈ C2)
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