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Abstract. This paper presents a dynamic logic dLCHP for composi-
tional deductive verification of communicating hybrid programs (CHPs).
CHPs go beyond the traditional mixed discrete and continuous dynamics
of hybrid systems by adding CSP-style operators for communication and
parallelism. A compositional proof calculus is presented that modularly
verifies CHPs including their parallel compositions from proofs of their
subprograms by assumption-commitment reasoning in dynamic logic.
Unlike Hoare-style assumption-commitments, dLCHP supports intuitive
symbolic execution via recorder variables for communication primitives.
Since dLCHP is a conservative extension of differential dynamic logic dL,
it can be used soundly along with the dL proof calculus and dL’s com-
plete axiomatization for differential equation invariants.
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1 Introduction

Their prevalence in safety-critical applications and ample technical subtleties
make both cyber-physical systems (CPS) verification [1, 2, 12, 30] and parallel
program verification [3, 20, 27, 38] important challenges. CPS verification com-
plexity stems from subtle interactions of their discrete control decisions and
differential equations. Parallel program verification complexity comes from in-
tricate interactions caused by synchronization via state or communication in-
terdependencies between parallel components. But their combination becomes
intrinsically complicated because parallel CPS are always interdependent as they
always synchronize implicitly by sharing the same global time. Moreover, many
real-world CPS have heterogeneous subsystems whose controllers do not operate
in lock-step, and their communication is potentially unreliable (see Fig. 1). Unlike
hybrid systems model checking [2,4,8,23]—which needs to compute products of
communicating parallel automata of significant size even when reducing the size
of the subautomata—deductive approaches can be truly compositional. Exist-
ing deductive verification approaches, however, fail to properly tackle the above
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challenges, since they are restricted to homogeneous subsystems [32], specific
component shapes and interaction patterns [19,22,26], do not support symbolic
execution [10, 21, 41], or are non-compositional [10, 21, 41], where even explicit
attempts on compositionality [10,41] turn out to be non-compostional again.
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Fig. 1: The interaction of CPS1

and CPS2 has (delayed) ( ),
lossy ( ×), and noisy ( ) com-
munication. Discrete change ( )
is independent of discrete change
in parallel unless synchronization
takes place. Continuous evolution
( ) is not interrupted by parallel
discrete behavior.

Neither compositionality to tame com-
plexity by reasoning separately about dis-
crete, continuous, and communication be-
havior, nor generality in expressing mod-
els, nor symbolic execution to boost the
feasibility of deductive reasoning are dis-
pensable for a practical approach. Thus, to
tackle all three of these challenges, this pa-
per presents dLCHP, a dynamic logic for
communicating hybrid programs (CHPs),
that extends differential dynamic logic dL
for hybrid programs of differential equa-
tions [30, 31, 33, 34] with CSP-style oper-
ators for parallel composition and mes-
sage passing communication [14, 15] as
well as assumption-commitment (ac) rea-
soning [25,43]. Parallel CHPs cannot share
state but can communicate. They run syn-
chronously in global time and their commu-
nication is instantaneous.

There are two fundamental approaches to reasoning about parallelism. Paral-
lelism can either be understood via unfolding its explicit operational semantics,
or via its denotational semantics implicitly characterizing parallel behavior by
matching behavior of the subprograms on their respective part of the state.
Verification based on the operational semantics unrolls the exponentially many
possible interleavings, as in hybrid automata [2] or hybrid CSP [10, 41]. Such
approaches admit superficial mitigation of the state space explosion but always
resorts to product automata after reducing the size of the subautomata [4,8,13],
or merely postpone the burden of reasoning about exponentially many trace in-
terleavings [10, 41] since it reveals the internal structure of subprograms [41].
In contrast, verification based on the denotational semantics is compositional
for discrete programs with ac-reasoning [43, 44], if the semantics is composi-
tional and aligns well with the intended reasoning. This paper generalizes ac-
reasoning for the purpose of integration with a compositional hybrid systems
logic [30,31,33,34].

Our central contribution is a sound compositional proof calculus for dLCHP.
For compositional verification of parallel communication, it embeds ac-reasoning
into dynamic logic via the explicit ac-modality [α]{A,C}ψ. The ac-modality ex-
presses that for all runs of α whose incoming communication meets assumption
A the outgoing communication fulfills commitment C and that ψ holds in the
final state. Formulas A and C specify the communication behavior of α, and
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enable parallel composition if they mutually agree for the contracts of subpro-
grams. Crucially, these formulas directly interface the communication history
via history variables such that communication can remain implicit in the par-
allel composition axiom just as in the underlying denotational semantics. Since
we prove that dLCHP is a conservative extension of dL, it inherits dL’s complete
axiomatization of differential equation invariants [35].

Unlike approaches built on Hoare-logics [10, 21, 41], our calculus supports
statement-by-statement symbolic execution instead of executing them backward.
Since executing communication primitives extends the former history, the new
history state requires a fresh name. As a consequence, it is unsound to adopt
Hoare-style ac-reasoning [43] verbatim with a distinguished variable for the com-
munication history. Instead, dLCHP reconciles ac-reasoning and symbolic exe-
cution via recorder variables whose evolution is maintainable, as done by our
communication axiom along the way.

In summary, we provide the first truly compositional approach to the verifi-
cation of communicating parallel hybrid system models and prove its soundness.
Our logical treatment separates the essentials of discrete, continuous, and com-
munication reasoning into axioms that are simple and modular compared to
earlier approaches [21, 41]. Even though the technical development is challeng-
ing because of a prefix-closed dynamic semantics, a subtle static semantics due
to the global time and recorder variables, and the mutual dependency of for-
mulas and programs in dynamic logic it remains finally under the hood. We
demonstrate the flexibility of dLCHP and its proof calculus with an example in
autonomous driving considering the challenge of lossy communication, where a
follower and leader car communicate to form a convoy.

2 Dynamic Logic of Communicating Hybrid Programs

We introduce dLCHP, a dynamic logic to reason about communicating hybrid
programs (CHPs). CHPs combine dL’s hybrid programs [30, 33, 34] with com-
munication primitives and a parallel operator similar to CSP [14, 15]. On the
logical side, dLCHP introduces ac-reasoning [25, 43, 44] into the dynamic logic
setup [11] of dL, allowing compositional reasoning about communication in a
way that preserves symbolic execution as an intuitive reasoning principle.

2.1 Syntax

The syntax uses channel names Ω and variables V = VR∪VN∪VT with pairwise
disjoint sets of real variables VR, integer variables VN, and trace variables VT . The
variable µ ∈ VR is designated to reflect the global time. By convention x, y, t ∈
VR, n, ni ∈ VN, h, hi ∈ VT , ch, chi ∈ Ω, and z, zi ∈ V . Notions FV (·) of free
and BV (·) of bound variables in formulas and programs are defined as usual by
simultaneous induction with the syntax (see AppendixB). V (·) = FV (·) ∪BV (·)
is the set of all variables, whether read or written.
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All real variables VR can be read and written in programs but the global
time µ is not meant to be written manually.4 Instead, the built-in evolution
of µ with every continuous behavior makes it represent the global flow of time.
Trace variables are bound by programs when they record communication. For a
program α, we call the remaining set (BV (α) ∩ VR) \ {µ} the state of α and say
that α operates over a real state. In parallel compositions α ∥ β, the programs
α and β may communicate explicitly but do not share state.

The logical language of dLCHP features trace algebra to reason about commu-
nication behavior following the approach of Zwiers et al. [42,44]. During symbolic
program execution, communication events are collected syntactically in logical
trace variables that were explicitly designated to record the history. This way,
the communication behavior of a program can be specified using recorder vari-
ables as interface. In analogy to a distinguished history variable, this interface is
crucial to obtain a compositional proof rule for parallel composition [17,38,44].

Definition 1 (Terms). Real terms TrmR(V,Ω), integer terms TrmN(V,Ω), chan-
nel terms TrmΩ(V,Ω), and trace terms TrmT (V,Ω) are defined by the grammar
below, where c ∈ Q is a rational constant, ch ∈ Ω a channel name, θ1, θ2 ∈ Q[VR]
are polynomials in VR, and C ⊆ Ω is a finite set of channel names. The set of
all terms is denoted by Trm(V,Ω).

TrmR(V,Ω) : η1, η2 ::= x | c | η1 + η2 | η1 · η2 | val(te[ie]) | time(te[ie])
TrmN(V,Ω) : ie1, ie2 ::= n | 0 | 1 | ie1 + ie2 | |te|
TrmΩ(V,Ω) : ce1, ce2 ::= ch | chan(te[ie])
TrmT (V,Ω) : te1, te2 ::= h | ϵ | ⟨ch, θ1, θ2⟩ | te1 · te2 | te ↓ C

Real terms TrmR(V,Ω) are formed by arithmetic operators, variables x (in-
cluding µ), and rational constants c. Additionally, val(te[ie]) accesses the value
and time(te[ie]) the timestamp of the ie-th communication in trace te. In CHPs
only polynomials θ ∈ Q[VR] ⊂ TrmR(V,Ω) in VR over rational coefficients oc-
cur, i.e., without trace terms, since CHPs operate over a real state. By conven-
tion, θ, θi denote terms from Q[VR].

For integers, we use Presburger arithmetic (no multiplication) since it is
decidable [37] and sufficient for our purposes.5 The integer term |te| denotes the
length of trace te. In analogy to val(te[ie]), the term chan(te[ie]) accesses the
channel name of the ie-th communication in trace te. The trace term ϵ represents
empty communication, te1 · te2 is the concatenation of trace terms te1 and te2,
and te ↓ C the projection of te onto the set of channel names C ⊆ Ω. The
tuple ⟨ch, θ1, θ2⟩ represents communication of θ1 along channel ch at time θ2,
where θ1, θ2 ∈ Q[VR] since communication is between programs over a real state.

A trace variable h refers to a sequence of communication events. By sym-
bolic execution, proofs collect communication items in trace variables designated

4 Programs writing the global time µ manually are likely to be meaningless such as
µ := 0 ∥ µ := 1 that sets µ to 0 and 1 in parallel, which fortunately has no runs.

5 Presburger arithmetic is the subset of TrmN(V,Ω) without length computations |te|.
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to record the history. Then, communication behavior is specified against these
recorder variables using projections onto the channels of interest (see Example 1
below). This allows specifications to hide the internal structure of programs
leading to compositional reasoning in the presence of communication [17,38,44].

Notation. We write val(te) to abbreviate val(te[|te| − 1]), i.e., access to the
value of the last item on trace te. Likewise, we use time(te) and chan(te).

Example 1. The formula |h ↓ ch| > 0 → val(h ↓ ch) > 0 expresses that the last
value sent along channel ch recorded by h is positive. The precondition |h↓ch| > 0
ensures that the value is accessed only for a non-empty history.

Definition 2 (Communicating hybrid programs). The set CHP(V,Ω) of
communicating hybrid programs is defined by the grammar below, where x ∈ VR
for x, x′, and θ ∈ Q[VR] is a polynomial in VR, and χ ∈ FOLR(VR) is a formula
of first-order real-arithmetic. In the parallel composition α ∥ β, the constituents
must not share state, i.e., V (α) ∩BV (β) = V (β) ∩BV (α) ⊆ {µ} ∪ VT .

α, β ::= x := θ | x := ∗ | {x′ = θ & χ} | ?χ | α;β | α ∪ β | α∗ | (standard dL)
ch(h)!θ | ch(h)?x | α ∥ β (CSP extension)

The statement x := θ instantly changes x to θ and nondeterministic assign-
ment x := ∗ sets x to an arbitrary value. Assignment to the global time µ is only
meant to be used by axioms. As in dL [30], continuous evolution {x′ = θ & χ}
follows the differential equation x′ = θ for a nondeterministically chosen duration
but only as long as the domain constraint χ is fulfilled.

In dLCHP, the global time µ always evolves during a continuous evolution
according to µ′ = 1 even if it does not occur syntactically. Hence, an evolution
µ′ = θ is considered ill-formed if θ ̸≡ 1 just like an ODE x′ = 1, x′ = 2 is con-
sidered ill-formed. Since programs operate over a real state, terms θ ∈ Q[VR] are
polynomials in VR and χ ∈ FOLR(VR) is a formula of first-order real-arithmetic.

The test ?χ passes if formula χ is satisfied. Otherwise, execution is aborted.
The sequential composition α;β executes β after α. The choice α ∪ β follows α
or β nondeterministically, and α∗ repeats α zero or more times.

Communication and parallelism are inspired by CSP [14]. The primitive
ch(h)!θ sends the value of term θ along channel ch and ch(h)?x receives a value
from ch binding it to variable x. For both statements, h is the trace variable
designated to record the communication. In an ongoing symbolic execution, this
variable can be renamed to refer to the variable keeping the most recent com-
munication history. In system models, all recorder variables are meant to be the
same. In this case, we also write ch!θ and ch?x instead of ch(h)!θ and ch(h)?x.

Finally, α ∥ β executes α and β in parallel for equal duration, i.e., their final
states agree on the value of the global time µ. If µ is not manipulated manually,
its increase equals the duration of continuous behavior. As in CSP, α and β
can perform synchronous message passing but cannot share state.6 All programs

6 The global time µ and trace variables VT are not considered as program state.
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participating in communication over a channel must agree on all communication
along that channel and share the same values and recorder variables at the
same time, i.e., message passing does not consume time. Since shared recorder
variables agree on the communication for all subprograms, they provide the
interface that allows for decomposition of parallel behavior. If the recorders are
not the same as in ch(h0)!θ ∥ ch(h1)?x, there are no runs. The need for matching
recorders in parallel composition must not be confused with renaming of the
history by symbolic execution along the sequential structure of programs.

As usual in CSP [14], the syntax does not enforce unidirectional communi-
cation such that several programs may send and receive on the same channel at
the same time as long as they agree on the recorder variables and values. For
example, ch(h)?x ∥ ch(h)?y is a well-formed program. Its semantics has all runs
where x and y receive the same values. Likewise, ch(h)!θ1 ∥ . . . ∥ ch(h)!θn has
terminating runs if the values of all θi agree. Consequently, a receive statement
ch(h)?x can be replaced with the semantical equivalent x := ∗; ch(h)!x.
Notation. As usual if (φ) {α} is short for (?φ;α) ∪ ?¬φ.
Example 2. Fig. 2 models two cars in a convoy safely adjusting their speed. From
time to time, the leader changes its speed vl in the range 0 to V and notifies the
follower about the change. The communication, however, is lossy (vel!vl ∪ skip).
Sending position updates by updt succeeds at least every ϵ time units. On such
an update, the follower’s controller dist awakes. If the distance d fell below ϵV ,
the follower slows down to avoid collision before the next position update.

Regularly, the follower adopts the speed update in velo, but crucially refuses
to do so if the last known distance was not safe (d > ϵV ). If the leader could
overwrite the follower’s speed, it could cause a future collision (see Fig. 3 below)
even though obeying would be perfectly fine at the moment. This is because a
subsequent notification of the leader slowing down could be lost.

velo ≡ vel?vtar; if (d > ϵV ) vf := vtar

dist ≡ pos?m; d := m− xf ;

if (d ≤ ϵV ) {vf := ∗; ?0≤vf <d/ϵ}
plantf ≡ {x′f = vf}

follower ≡
(
(velo ∪ dist);plantf

)∗

χvel ≡ 0≤vl≤V
noti ≡ vl := ∗; ?χvel; (vel!vl ∪ skip)

updt ≡ pos!xl;w := 0

plantl ≡ {w′ = 1, x′l = vl & w ≤ ϵ}
leader ≡

(
(noti ∪ updt);plantl

)∗
Fig. 2: Models of two moving cars (follower and leader) intended to form the
convoy follower ∥ leader by parallel composition, communicating target speed.

Definition 3 (Formulas). The set of dLCHP formulas Fml(V,Ω) is defined by
the following grammar, where z ∈ V , terms e1, e2 ∈ Trm(V,Ω) are of equal sort,
ηi ∈ TrmR(V,Ω), iei ∈ TrmN(V,Ω), tei ∈ TrmT (V,Ω), and the ac-formulas A
and C do not refer to state and time of α, i.e., (FV (A)∪ FV (C))∩BV (α) ⊆ VT .

φ,ψ,A,C ::= e1 = e2 | η1 ≥ η2 | ie1 ≥ ie2 | te1 ⪯ te2 | ¬φ | φ ∧ ψ | φ ∨ ψ |
φ→ ψ | ∀z φ | ∃z φ | [α]ψ | [α]{A,C}ψ
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Fig. 3: Plot of example positions xf
and xl of the cars over time. First,
speed update is accepted (✓). The
next update is lost ( ×). After
position update (|↔|), the follower
adjusts its speed. Crucially, it con-
servatively rejects the speed update
(✓\) when a crash ( ) with a slowing
leader is possible since speed com-
munication may fail ( ×) until the
next reliable position update is ex-
pected, see dashed trajectory ( ).

For specifying the (communication)
behavior of CHPs, we combine first-order
dynamic logic [11] with ac-reasoning [43].
Equality is defined on each sort of terms.
On real and integer terms, ≥ has the usual
meaning. On trace terms, te1 ⪯ te2 means
that te1 is a prefix of te2. There is no
order on channel terms. Quantified vari-
ables z ∈ V are of arbitrary sort. Since
our primary interest is safety, we omit the
dynamic modality ⟨α⟩ψ and give no dual
⟨α⟩{A,C}ψ for [α]{A,C}ψ.

Besides the dynamic modality [α]ψ,
dLCHP prominently features the ac-box
[α]{A,C}ψ that reshapes Hoare-style ac-
reasoning [43] into the modal approach
of dynamic logic. In an ac-contract φ →
[α]{A,C}ψ, assumption A and commit-
ment C specify α’s communication behav-
ior along the interface of recorder vari-
ables but without access to α’s state and
time as required by (FV (A) ∪ FV (C)) ∩
BV (α) ⊆ VT , whereas formulas φ and ψ
act as pre- and postcondition as usual.
Formula [α]{A,C}ψ promises that C holds after each communication event of
α assuming A held before each event. Moreover, if the program terminated and
A held before and after each communication event, the final state satisfies ψ.

Example 3. The safety condition about follower and leader below expresses: If
they start driving with a distance of at least d and a speed ≤d/ϵ that prevents
the follower from reaching the leader within ϵ time units, then the cars do never
collide. Section 3 shows a proof of this formula.

ϵ ≥ 0 ∧ 0≤vf ≤d/ϵ ∧ vf ≤ V ∧ xf + d < xl → [follower ∥ leader]xf < xl

Closed systems, where communication has an internal partner, can be spec-
ified using boxes [·]ψ (see Example 3) since their safety does not depend on the
environment. Ac-boxes [·]{A,C}ψ come into play when such systems are decom-
posed since the constituents follower and leader are each other’s environment.

2.2 Semantics

CHPs have a denotational linear history semantics merging ideas from dL [30]
and ac-reasoning [44] and adding synchronization in the global time. The basic
domains are traces T and states S. A trace τ ∈ T is a finite sequence (τ1, ..., τn)
of communication events τi = ⟨chi, ai, si⟩ with channel chi ∈ Ω, value ai ∈ R,
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and timestamp si ∈ R that is chronological, i.e., si ≤ sj for all 1 ≤ i < j ≤ n.
The empty trace is denoted ϵ, the concatenation of traces τ1 and τ2 is τ1 · τ2,
and for C ⊆ Ω, the projection τ ↓ C is the subsequence of τ consisting exactly
of those ⟨ch, a, s⟩. 7 By τ ′ ⪯ τ and τ ′ ≺ τ , we express that τ ′ is a prefix or
proper prefix of τ , respectively. A recorded trace τ ∈ Trec is a trace that has an
additional recorder variable hi ∈ VT for each communication event such that
τi = ⟨hi, chi, ai, si⟩. Definitions for traces, such as concatenation and prefixing,
accordingly apply to recorded traces. Raw traces T represent trace terms in a
state, whereas recorded traces originate from programs.

A state is a map v : V → R∪N∪T that assigns a value from type(z) to each
variable z ∈ V , where type(e) = M if e ∈ TrmM(V,Ω) for M ∈ {R,N, T }. The
updated state vdz is defined by vdz = v on {z}∁ and vdz (z) = d. State-trace concate-
nation v ·τ appends recorded communication τ ∈ Trec to the corresponding trace
variable in v ∈ S. It is defined by v · τ = v on V ∁

T and (v · τ)(h) = v(h) · τ(h) for
all h ∈ VT , where τ(h) denotes the subtrace of τ consisting of the raw versions
⟨ch, a, s⟩ of communication events ⟨h, ch, a, s⟩ in τ recorded by h.

Term Semantics. The value [[e]]v ∈ type(e) of term e at state v ∈ S is according
to its sort type(e) (see AppendixA). The evaluation of real and integer terms
is as usual. Additionally, val(te[ie]) evaluates to the value, time(te[ie]) to the
timestamp, and chan(te[ie]) to the channel name of the ie-th communication
event in te with indices from 0 to |te| − 1. Moreover, |te| evaluates to the length
of te. The evaluation of trace terms is aligned with the semantic operators on
traces [42,44], e.g., [[te ↓C]]v = ([[te]]v) ↓C and [[⟨ch, θ1, θ2⟩]]v = ⟨ch, [[θ1]]v, [[θ2]]v⟩.

Domain of Computation. The denotational semantics [[α]] ⊆ D of a CHP α
has domain D = S×Trec×S⊥ with S⊥ = S∪{⊥}, i.e., the observables of a CHP
started from a state are communication and a final state. The marker ⊥ indicates
an unfinished execution that either can be continued or was aborted due to a
failing test. Since communication can even be observed from unfinished compu-
tations, a meaningful semantics of communicating programs is prefix-closed and
total (see Def. 4 below). Totality captures that every program can at least start
computation even if it aborts immediately like ?

T
and has not emitted commu-

nication initially. For Def. 4, we extend the prefix relation ⪯ on traces Trec to
a partial order ⪯ on observable behavior Trec × S⊥ expressing that (τ ′, w′) is a
prefix of (τ, w) if

(
(w = w′ and τ = τ ′) or (w′ = ⊥ and τ ′ ⪯ τ)

)
.

Definition 4 (Prefix-closedness and totality). A set U ⊆ D is prefix-closed
if (v, τ, w) ∈ U and (τ ′, w′) ⪯ (τ, w) implies (v, τ ′, w′) ∈ U . The set is total if
⊥D ⊆ U with ⊥D = S × {ϵ} × {⊥}, i.e., (v, ϵ,⊥) ∈ U for every v ∈ S.

7 We use the same operators for corresponding syntax and semantics, i.e., te ↓ C and
τ ↓ C are the projection on C for trace term te and semantic trace τ , respectively.
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Program Semantics. The semantics of compound programs is composition-
ally defined in terms of semantical operators: For U,M ⊆ D, we define U⊥ =
{(v, τ,⊥) | (v, τ, w) ∈ U} and (v, τ, w) ∈ U ▷ M if (v, τ1, u) ∈ U and u ̸= ⊥
and (u, τ2, w) ∈ M exists such that τ = τ1 · τ2. The operator ◦̂ is for sequential
composition. For U,M ⊆ D, we define U ◦̂M = U⊥∪(U ▷M). Semantic iteration
Um is defined by U0 = ID = ⊥D ∪ (S × {ϵ} × S) and Un+1 = U ◦̂ Un for n > 0.
Accordingly, α0 ≡ ?T and αn+1 ≡ α;αn defines syntactic iteration.

Parallel composition α ∥ β requires that α and β have disjoint bound vari-
ables (Def. 2) except for {µ}∪VT , where they will always agree. Thus, the merged
state wα ⊕ wβ ∈ S⊥ for states wα, wβ ∈ S⊥ can be unambiguously determined
as follows: wα ⊕ wβ = ⊥ if at least one of the states is ⊥. Otherwise, define
(wα ⊕ wβ)(z) = wα(z) if z ∈ BV (α) and (wα ⊕ wβ)(z) = wβ(z) if z ̸∈ BV (α).8

For program α, the set CN(α) ⊆ Ω consists of all channel names occurring in α,
i.e., in send ch(h)!θ and receive ch(h)?x statements. The projection τ ↓ CN(α)
is abbreviated as τ ↓ α. The semantic parallel operator is defined as follows for
programs α, β ∈ CHP(V,Ω):

[[α]] ∥ [[β]] =

{
(v, τ, wα ⊕ wβ) ∈ D

∣∣∣∣ (v, τ ↓ α,wα) ∈ [[α]], (v, τ ↓ β,wβ) ∈ [[β]],

wα(µ) = wβ(µ), τ = τ ↓ (α ∥ β)

}

Instead of computing explicit interleavings, the parallel operator ∥ character-
izes the joint communication τ implicitly via any order that the subprograms can
agree on. Thereby τ ∈ Trec rules out non-chronological ordering of communica-
tion events that are exclusive to either τ ↓α or τ ↓β. Moreover, by τ = τ ↓(α ∥ β),
the trace τ must not contain any junk, i.e., communication not caused by α or β.
Communication along joint channels of α and β must agree in its recorder vari-
able, value, and timestamp as it occurs in τ ↓ α and τ ↓ β. By wα(µ) = wβ(µ)
both computations need to meet at the same point in global time.9

Definition 5 (Program semantics). The semantics [[α]] ⊆ D of a program
α ∈ CHP(V,Ω) is inductively defined as follows, where ⊥D = S × {ϵ} × {⊥}
and ⊨ is the satisfaction relation for formulas (Def. 6):

[[x := θ]] = ⊥D ∪ {(v, ϵ, w) | w = v[[θ]]vx }
[[x := ∗]] = ⊥D ∪ {(v, ϵ, w) | w = vax where a ∈ R}
[[?χ]] = ⊥D ∪ {(v, ϵ, v) | v ⊨ χ}
[[{x′ = θ & χ}]] = ⊥D ∪

{
(φ(0), ϵ, φ(s)) | φ(ζ) ⊨ µ′ = 1 ∧ x′ = θ ∧ χ and

φ(ζ) = φ(0) on {x, µ}∁ for all ζ ∈ [0, s] and a solution

φ : [0, s] → S with φ(ζ)(z′) =
dφ(t)(z)

dt
(ζ) for z ∈ {x, µ}

}
8 The alternative condition z ∈ BV(β) leads to an equivalent definition when wα = wβ

on (BV(α) ∪BV(β))∁, which is the case for the final states in parallel composition.
9 We consider wα(µ) = wβ(µ) fulfilled if wα = ⊥ or wβ = ⊥.
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[[ch(h)!θ]] = {(v, τ, w) | (τ, w) ⪯ (⟨h, ch, [[θ]]v, v(µ)⟩, v)}
[[ch(h)?x]] = {(v, τ, w) | (τ, w) ⪯ (⟨h, ch, a, v(µ)⟩, vax) where a ∈ R}
[[α ∪ β]] = [[α]] ∪ [[β]]

[[α;β]] = [[α]] ◦̂ [[β]] = [[α]]⊥ ∪ ([[α]] ▷ [[β]])

[[α∗]] =
⋃
n∈N

[[α]]n =
⋃
n∈N

[[αn]]

[[α ∥ β]] = [[α]] ∥ [[β]]

In the semantics of continuous evolution, the solution for the ODE gives
meaning to the primed variable x′ as in dL [33]. By µ′ = 1, the global time µ
always evolves with slope 1 with every continuous evolution.

The semantics [[α]] ⊆ D is prefix-closed and total (Def. 4) for every program α
(see AppendixA). For atomic non-communicating programs, ⊥D = S×{ϵ}×{⊥}
ensures prefix-closedness. If ?χ or {x′ = θ&χ} abort, ⊥D also guarantees totality.
Keeping the unfinished computations [[α]]⊥ preserves prefix-closedness of α;β.

Formula Semantics. The semantics of the first-order fragment is as usual. Like
in dynamic logic [11], the box [α]ψ means that ψ is true after all finished com-
putations, i.e., the final state and communication of (v, τ, w) ∈ [[α]] with w ̸= ⊥.
The ac-box [α]{A,C}ψ additionally means that the communication of (un)finished
computations fulfills commitment C. In our modal treatment of ac-reasoning [43],
assumption A and program α determine the reachable worlds together, i.e., only
computations need to be considered whose incoming communication meets A.

Definition 6 (Formula semantics). The semantics [[φ]] ⊆ S of a formula
φ ∈ Fml(V,Ω) is defined as [[φ]] = {v | v ⊨ φ} using the satisfaction relation ⊨.
The relation ⊨ is defined by induction on the structure of φ as follows:

1. v ⊨ e1=e2 if [[e1]]v = [[e2]]v. Accordingly, for η1≥η2, ie1≥ie2, te1⪯te2
2. v ⊨ φ ∧ ψ if v ⊨ φ and v ⊨ ψ. Accordingly, for ¬,∨,→
3. v ⊨ ∀z φ if vdz ⊨ φ for all d ∈ type(z)
4. v ⊨ ∃z φ if vdz ⊨ φ for some d ∈ type(z)
5. v ⊨ [α]ψ if w · τ ⊨ ψ for all (v, τ, w) ∈ [[α]] with w ̸= ⊥
6. v ⊨ [α]{A,C}ψ if for all (v, τ, w) ∈ [[α]] the following conditions hold:

{v · τ ′ | τ ′ ≺ τ} ⊨ A implies v · τ ⊨ C (commit)(
{v · τ ′ | τ ′ ⪯ τ} ⊨ A and w ̸= ⊥

)
implies w · τ ⊨ ψ (post)

Where U ⊨ φ for a set of states U ⊆ S and any formula φ ∈ Fml(V,Ω) if
v ⊨ φ for all v ∈ U . In particular, ∅ ⊨ φ.

In item 6, (commit) is checked after each communication event as desired
since all communication prefixes are reachable worlds by prefix-closedness of
the program semantics [[α]] (Def. 4). Via state-trace concatenation v · τ and w · τ
in item 5 and item 6, the communication events recorded in τ become observable.
This follows the realization that the reachable worlds of a CHP consist of the
final state and the communication trace.
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Remark 1. In (commit), assumptions are only available about the communica-
tion strictly before to prevent unsound circular reasoning [17, 43]. With a non-
strict definition, the formula y = 0 → [ch(h)!y]{A,C}T, where A ≡ C ≡ |h ↓ ch| >
0 → val(h ↓ ch) = 1, would get valid. Locally, we are aware of the contradic-
tion between the precondition y = 0 and what is assumed by A, whereas the
environment is not and would trust in the promise C.

Proposition 1 (Conservative extension). The logic dLCHP is a conservative
extension of dL. That is, a formula φ ∈ Fml(V,Ω) ∩ FmldL is valid in dLCHP

iff it is valid in dL, where FmldL is the set of dL formulas (see AppendixA).

2.3 Calculus

This section develops a sound (see Theorem1) proof calculus for dLCHP, sum-
marized in Fig. 4 on page 13. In Fig. 5 on page 14, we provide common derived
rules. Since dLCHP is a conservative extension of dL (Proposition 1), the en-
tire dL sequent calculus [33, 34, 36] can be used soundly for reasoning about
dLCHP formulas. A sequent Γ ⊢ ∆ with finite lists of formulas Γ , ∆ is short for∧
φ∈Γ φ→

∨
ψ∈∆ ψ.

Each program statement is axiomatized by a dynamic box [·]ψ or an ac-box
[·]{A,C}ψ. Axioms [ϵ]AC and []⊤,⊤ for switching between dynamic and ac-boxes
mediate between them. The dynamic axioms are as usual in differential [33]
dynamic logic [11]. The ac-axioms re-express Hoare-style ac-reasoning [43] as a
dynamic logic. However, we design more atomic axioms for parallel composition
and communication from which the proof rule [∥ ]ACR for parallel composition
and proof rules for communication derive.

Noninterference (Def. 7) identifies valid instances of the formula [α]{A,C}ψ →
[α ∥ β]{A,C}ψ, which we introduce as axiom [∥ ]AC in Fig. 4. For formula χ, the
accessed channels CN(χ) ⊆ Ω are those channels whose communication may
influence the truth value of χ, e.g., ch in |h ↓ ch| > 0. That is, CN(χ) plays a
similar role for the communication traces v|VT (the state restricted to VT ) with
v ∈ S as FV (χ) does for the overall state v. For program α, the set CN(α)
denotes the communication channels used.

Definition 7 (Noninterference). Given an ac-box [α ∥ β]{A,C}ψ the CHP β
does not interfere with its surrounding contract if the following conditions hold:10

FV (ψ) ∩BV (β) ⊆ {µ} ∪ VT (1)

FV (χ) ∩BV (β) ⊆ VT (for χ ∈ {A,C}) (2)

CN(χ) ∩ CN(β) ⊆ CN(α) (for χ ∈ {A,C, ψ}) (3)

10 The definition only restricts β’s influence on formulas A, C, ψ but not on program α
because in parallel composition α ∥ β, the subprograms must not share state anyway.
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Clearly, state variables bound by β and free in χ ∈ {A,C, ψ} would influ-
ence χ’s truth in [α ∥ β]{A,C}ψ. But equation (1) and equation (2) do not cap-
ture trace variables VT since they are also α’s interface with communication that
might be joint with β. However, equation (3) restricts access to trace variables
in χ to those channels whose communication can be observed either exclusively
from α or as joint communication between α and β, thus prevents influence of β
on χ beyond what is already caused by α. Still Def. 7 allows full access to α’s
communication including the joint communication with β.

Dynamic ac-reasoning. In Hoare-style ac-reasoning [43], a distinguished his-
tory variable records communication globally. Assuming that h is such a variable
in dLCHP, a tempting but wrong axiomatization of the send statement would be

[ch!θ]ψ(h) ↔ ∀h0
(
h0 = h · ⟨ch, θ, µ⟩ → ψ(h0)

)
. ( )

Applying it to
⊢ [ch1!θ1][ch2!θ2]ψ(h) (4)

results in h0 = h · ⟨ch1, θ1, µ⟩ ⊢ [ch2!θ2]ψ(h0). After this step, the ongoing his-
tory is h0. However, another application leads to h0 = h · ⟨ch1, θ1, µ⟩, h1 =
h · ⟨ch2, θ2, µ⟩ ⊢ ψ(h0). Incorrectly, communication is appended to h again and
ψ(h0) still refers to h0. Problematically, the substitution ([ch2!θ2]ψ(h)){h 7→ h0}
during the first application does not guide ch2!θ2 to append its communication
to h0. Without h occurring syntactically but being free in ch2!θ2 the substitution
does not even have a meaningful definition. For a similar reason, axiom

[ch!θ]ψ(h) ↔ ψ(h · ⟨ch, θ, µ⟩) ( )

is unsound as applying it twice to equation (4) leads to ⊢ ψ(h · ⟨ch2, θ2, µ⟩ ·
⟨ch1, θ1, µ⟩) with the communication items in wrong order. Here the axiom is
not able to append the second item at the right position because there is no
symbolic name for the state h · ⟨ch1, θ1, µ⟩ of history after the first application.

To enable symbolic execution, we drop the assumption of a distinguished his-
tory variable and annotate each communication statement ch(h)!θ and ch(h)?x
with an explicit recorder variable h. Now, substitution α{h 7→ h0} is defined
easily as ch(h0)!θ for α ≡ ch(h)!θ, and as ch(h0)?x for α ≡ ch(h)?x, and as α
for other atomic programs, and by recursive application otherwise.

Atomic Hybrid Programs. For an (atomic) non-communicating program α,
we can flatten [α]{A,C}ψ by axiom [ϵ]AC to a dynamic formula because A and C
only refer to the initial state when CN(α) = ∅. Subsequently, we can execute the
program by its dynamic axiom ([:=], [:∗], [?], [′]). Note that by conservative
extension (Proposition 1) axiom [′] only applies to [{x′ = θ & χ}]ψ if the ODE
x′ = θ matches the underlying semantics, i.e., if µ ∈ x, which has right-hand
side 1 for well-formed continuous evolution x′ = θ. Therefore, axiom [µ] allows
to materialize the flow of global time µ as evolution µ′ = 1 whenever necessary.
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[:=] [x := θ]ψ(x) ↔ ψ(θ)

[:∗] [x := ∗]ψ ↔ ∀xψ

[?] [?χ]ψ ↔ (χ→ ψ)

[]⊤,⊤ [α]ψ ↔ [α]{T,T}ψ

[;]AC [α;β]{A,C}ψ ↔ [α]{A,C}[β]{A,C}ψ

[∪]AC [α ∪ β]{A,C}ψ ↔ [α]{A,C}ψ ∧ [β]{A,C}ψ

[∗]AC [α∗]{A,C}ψ ↔ [α0]{A,C}ψ ∧ [α]{A,C}[α
∗]{A,C}ψ

a

IAC [α∗]{A,C}ψ ↔ [α0]{A,C}ψ ∧ [α∗]{A,T}(ψ → [α]{A,C}ψ)
a

[µ] [{x′ = θ & χ}]ψ ↔ [{µ′ = 1, x′ = θ & χ}]ψ

[′] [x′ = θ(x)]ψ(x) ↔ ∀t≥0 [x := y(t)]ψ(x) (y′(t) = θ(y) and µ ∈ x)b

[ch!] [ch(h)!θ]ψ(h) ↔ ∀h0

(
h0 = h · ⟨ch, θ, µ⟩ → ψ(h0)

)
(h0 fresh)

[ch!]AC [ch(h)!θ]{A,C}ψ ↔ C ∧
(
A → [ch(h)!θ]

(
C ∧ (A → ψ)

))
[ch?]AC [ch(h)?x]{A,C}ψ ↔ [x := ∗][ch(h)!x]{A,C}ψ

[]K (Cl∀K) ∧ [α]{A1∧A2,C1∧C2}ψ → [α]{A,C1∧C2}ψ
cd

[∥ ]AC [α]{A,C}ψ → [α ∥ β]{A,C}ψ (β does not interfere with [α]{A,C}ψ (Def. 7))

[ϵ]AC [α]{A,C}ψ ↔ C ∧ (A → [α]ψ) (CN(α) = ∅)d

W[]AC [α]{A,C}ψ ↔ C ∧ [α]{A,C}(C ∧ (A → ψ))

[]AC∧ [α]{A,C1∧C2}(ψ1∧ψ2) ↔
∧2

j=1[α]{A,Cj}ψj

M[·]AC
A2 → A1 C1 → C2 ψ1 → ψ2

[α]{A1,C1}ψ1 → [α]{A2,C2}ψ2

GAC
C ∧ ψ

[α]{A,C}ψ

a Note that [α0]{A,C}ψ ↔ C ∧ (A → ψ) by [ϵ]AC and [?] since α0 ≡ ?T.
b Conservative extension only applies if µ′ = 1 is part of x′ = θ, which holds if µ ∈ x
since every right-hand side for µ other than 1 in an evolution is considered ill-formed.

c K is the compositionality condition (A ∧ C1 → A2) ∧ (A ∧ C2 → A1). The universal
closure Cl∀φ of φ is defined by ∀z1, ..., zn φ, where FV(φ) = {z1, ..., zn}.

d Care must be taken, for example, when [ϵ]AC is applied from right to left, that
resulting ac-boxes are well-formed, i.e., (FV(A)∪FV(C))∩BV(α) ⊆ VT for [α]{A,C}ψ.

Fig. 4: dLCHP proof calculus

Compound Hybrid Programs. Compound CHPs in an ac-box cannot be
handled by axiom [ϵ]AC if they communicate. Instead, they have the axioms [;]AC,
[∪]AC, [

∗]AC, and IAC. Compound programs in a dynamic box can be repackaged
into an ac-box using axiom []⊤,⊤. The ac-induction axiom IAC carefully gener-
alizes that of dynamic logic [11]. Importantly, the reachable worlds, where the
induction step needs to hold, only depend on program α and assumption A
about incoming communication, whereas commitment C is proven inductively.
In Fig. 5, we give the useful derived loop invariant proof rule indAC. As usual, it
derives from axiom IAC and the ac-version GAC of the Gödel-generalization rule,
which confirms that the embedding into dynamic logic is correct.

If we were to neglect the communication of aborting runs in the semantics
of α;β, axiom [;]AC would not be sound. Proving [α]{A,C}[β]{A,C}ψ requires to
show the commitment C after each communication of α even if β aborts. To
obtain this from [α;β]{A,C}ψ the semantics [[α;β]] = [[α]]⊥ ∪ ([[α]] ▷ [[β]]) contains
all respective runs of α up to β with [[α]]⊥.
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CG
Γ, h0 = h · ⟨ch, θ, µ⟩ ⊢ [α(h0)]ψ,∆

(h ̸∈ FV(ψ) and h0 fresh)
Γ,⊢ [α(h)]ψ,∆

indAC
Γ ⊢ C ∧ I,∆ C, I ⊢ [α]{A,C}I A,C, I ⊢ ψ

Γ ⊢ [α∗]{A,C}ψ,∆
[if ]

Γ, φ ⊢ [α]ψ,∆ Γ,¬φ ⊢ ψ,∆
Γ ⊢ [if (φ) {α}]ψ,∆

[∥ ]ACR
⊢ K Γ ⊢ [αj ]{Aj ,Cj}ψj ,∆ (j = 1, 2) (α3−j does not interfere with

[αj ]{Aj ,Cj}ψj for j = 1, 2 (Def. 7))aΓ ⊢ [α1 ∥ α2]{A,C1∧C2}(ψ1 ∧ ψ2),∆

[!θ]ACR
Γ ⊢ C(h),∆ Γ,H0 ⊢ C(h0),∆ Γ,H0,A(h0) ⊢ ψ(h0),∆

(h0 fresh)b
Γ ⊢ [ch(h)!θ]{A(h),C(h)}ψ(h),∆

a K is the compositionality condition (A ∧ C1 → A2) ∧ (A ∧ C2 → A1).
b Formula H0 is short for h0 = h · ⟨ch, θ, µ⟩ recording the global time µ as timestamp.

Fig. 5: Derived dLCHP proof rules

Communication Statements. Axiom [ch!]AC unfolds (commit) for an ac-box
of a single send statement into a dynamic box. The effect on the recorder vari-
able h of executing sending ch(h)!θ is captured by axiom [ch!]. It records the
event ⟨ch, θ, µ⟩ using the current global time µ as timestamp and renames the
history in the postcondition for subsequent proof steps. Axiom [ch?]AC allows
to execute a receive statement by its duality with send. Derived rule [!θ]ACR
combines [ϵ]AC and [ch!], and decomposes the statement into two premises for
(commit) and one for (post). Derived rule CG is useful as it eliminates the need
for case distinction about empty history by prefixing the history with additional
ghost communication.

Parallel Composition. A non-interfering program β (Def. 7) can be dropped
from parallel composition [α ∥ β]{A,C}ψ by axiom [∥ ]AC because it has no in-
fluence on the surrounding contract [α ∥ ]{A,C}ψ. Since ∥ is associative and
commutative (see AppendixC), axiom [∥ ]AC can drop any subprogram in a
chain of parallel statements. In parallel composition of [αj ]{Aj ,Cj}ψj for j = 1, 2,
the commitments mutually contribute to the assumptions. This can weaken the
assumption of α1 ∥ α2 about its environment to A by axiom []K if the composi-
tionality condition K ≡ (A ∧ C1 → A2) ∧ (A ∧ C2 → A1) is valid.

The derived rule [∥ ]ACR combines axioms [∥ ]AC and []K for full decompo-
sition of parallelism. Reasoning about a parallel [α1 ∥ α2]{A,C}ψ with arbitrary
A, C, and ψ is the task of constructing Aj , Cj , and ψj for j = 1, 2 such that
C1 ∧ C2 → C, and ψ1 ∧ ψ2 → ψ are valid, and such that [∥ ]ACR is applicable.
Since the side condition of [∥ ]ACR about noninterference still allows Cj and ψj
for j = 1, 2 to access αj ’s communication including the joint communication
with α3−j , the formulas can cover the complete communication of α1 ∥ α2.

Miscellaneous. Ac-boxes distribute over conjunctions by axiom []AC∧ except
for assumptions just like preconditions φj do not distribute in φ1 ∧ φ2 → [α]ψ.
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Rule M[·]AC generalizes monotonicity from dynamic to ac-boxes. Ac-weakening
W[]AC exploits totality of the program semantics [[α]] to add or drop C in the
initial state. Moreover, adding or dropping C and A → ψ by W[]AC in the final
state is due to (commit) and (post), respectively. Rule GAC is the ac-version of
the Gödel-generalization rule.

First-order formulas FOLN(VN) over TrmN(V,Ω) without length computa-
tions |te|, can be handled by an effective oracle proof rule (called N) since Pres-
burger arithmetic is decidable [37]. Likewise, first-order real arithmetic FOLR(VR)
is decidable [40], and we use an oracle rule for it (called R) as in dL [30]. How-
ever, the full first-order fragment FOL(V,Ω) of dLCHP is not decidable because
of alternating quantifiers of trace and integer variables [5].

Instead, reasoning about trace terms is by simple algebraic laws for suc-
cessive simplification (see AppendixC) [42]. For applicability of rules R and N
trace subterms can be rewritten with fresh variables. For example, val(te1[ie]) <
val(te2[ie]) → val(te1[ie]) + θ < val(te2[ie]) + θ is valid since x < y → x+ θ <
y+ θ is valid in FOLR(VR). Ultimately, we use N and R modulo trace terms, i.e.,
perform rewritings silently.

Our central contribution is the soundness theorem about the compositional
dLCHP proof calculus. The proof rules given in Fig. 5 derive (see AppendixC).

Theorem 1. The dLCHP calculus (see Fig. 4) is sound (see AppendixC).

3 Demonstration of dLCHP

We demonstrate our calculus outlining a proof of the safety condition from Ex-
ample 3 on page 7 about the convoy in Fig. 2 on page 6. After decomposing
the parallel statement, the proof proceeds purely mechanical by statement-by-
statement symbolic execution. It starts in Fig. 7 using a standard pattern for
decomposing a parallel statement: First, introduce commitments and postcondi-
tions (see Fig. 6) by axiom []⊤,⊤ and rule M[·]AC, which relate the subprograms,
such that second, rule [∥ ]ACR becomes applicable. The latter also makes the
commitments mutual assumptions.

The formulas in Fig. 6 relating the subprograms clearly reduce their complex
interior and only depend on the small communication interface and local vari-
ables, thus are independent of any knowledge about the internal structure of the
respective other car. Adding initial ghost communication (rule CG) exploits the
flexibility of explicit history variables and dynamic logic to avoid cumbersome
case distinction about empty history.

Fig. 7 decomposes xf < xl into ψf and ψl since follower stays behind leader’s
last known position val(hpos), whereas leader never drives backward by ψl.
Indeed, follower stores the last known distance val(hpos) − xf in d and ϵ −
∆(µ, hpos) bounds the waiting time till the next position update along channel
pos. Thus, follower stays behind leader when driving with speed d/ϵ.

Fig. 8 continues from Fig. 7 and demonstrates the reasoning along one exe-
cution path of follower. The invariant F for induction indAC bounds follower’s
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φ ≡ ϵ ≥ 0 ∧ 0≤vf ≤d/ϵ ∧ vf ≤ V ∧ xf + d < xl (precond. convoy)

ψf ≡ 0 ≤ d/ϵ ∧ xf + (ϵ−∆(µ, h ↓ pos))d/ϵ < val(h ↓ pos) (postcond. follower)

ψl ≡ val(h ↓ pos) ≤ xl ∧∆(µ, h ↓ pos) ≤ ϵ (postcond. leader)

A ≡ C ≡ 0≤val(h ↓ vel)≤V (ac-formulas)

Fig. 6: For ch ∈ {vel,pos}, the term ∆(µ, h ↓ ch) is short for µ − time(h ↓ ch),
i.e., the time elapsed since last communication along ch recorded by h. The
commitment C given by the leader, assumption A made by the follower, and the
postconditions ψf and ψl are used in the proof in Fig. 7.

◁1 ⊤R

◁2 R

∗
⊢ C → A

▷ Fig. 8

Γ ⊢ [follower(h)]{A,T}ψf

▷ Fig. 21

Γ ⊢ [leader(h)]{T,C}ψl
[∥ ]ACR

Γ ⊢ [follower(h) ∥ leader(h)]{T,C}(ψf ∧ ψl)
M[·]AC

Γ ⊢ [follower(h) ∥ leader(h)]{T,C}xf < xl
M[·]AC

Γ ⊢ [follower(h) ∥ leader(h)]{T,T}xf < xl
[]⊤,⊤

Γ ⊢ [follower(h) ∥ leader(h)]xf < xl
2×CG

φ ⊢ [follower(h0) ∥ leader(h0)]xf < xl
→R

⊢ φ→ [follower(h0) ∥ leader(h0)]xf < xl

Fig. 7: Safety proof for the convoy from Example 2, where Γ is the formula list
φ, h1 = h0 · ⟨vel, 0, µ⟩, h = h1 · ⟨pos, xl, µ⟩. The open premises C ⊢ T (◁1) and
ψf ∧ ψl ⊢ xf < xl (◁2) close by rules ⊤R and R, respectively.

speed by d/ϵ such that it stays behind leader before the next position update. TA
indicates trace algebra reasoning. The remaining proof is mechanical symbolic
execution. In particular, combining [ϵ]AC and W[]AC swallows the ac-formulas
{A,T} and using duality axiom [ch?]AC allows to execute the communication
by rule [!θ]ACR. Axiom [µ] materializes the flow of the global time µ making
the solution axiom [′] applicable. Weakening WL drops irrelevant premises, ∀R
introduces fresh for quantified variables, and =L and =R perform substitution
on the left and right, respectively. Trace algebra TA evaluates the assumption A.
Finally, the proof concludes by real arithmetic R modulo trace terms.

4 Related Work

Unlike CHPs, Hybrid CSP (HCSP) [18] extends CSP [14] with eager continuous
evolution terminating on violation of the evolution constraint. This reduced non-
determinism leaves negligible room for parallel programs to agree on a duration,
which easily results in empty behavior and vacuous proofs, Non-eager evolution
in CHPs subsumes eager runs. Instead of exploiting their compositional mod-
els as in dLCHP, other hybrid process algebras are verified non-compositionally
by translation to model checking [6, 24, 39]. Unlike CHPs, which demonstrated
to model and reason about loss of communication out of the box, meta-level
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∗ R
F,A, 0≤vtar≤V, d > ϵV, t ≥ 0 ⊢ 0≤vtar≤d/ϵ

∧ vf ≤ V ∧ xf + (ϵ−∆(µ+ t, h ↓ pos))d/ϵ < val(h ↓ pos)
TA

F,A,A(h · ⟨ch, vtar, µ⟩), d > ϵV, t ≥ 0 ⊢ F(vtar, xf + t · vtar, µ+ t, hvel)
=L

F,A, Hvel,A(hvel), d > ϵV, t ≥ 0 ⊢ F(vtar, xf + t · vtar, µ+ t, hvel)
∀R

F,A, Hvel,A(hvel), d > ϵV ⊢ ∀t≥0F(vtar, xf + t · vtar, µ+ t, hvel)
[′], [:=]

F,A, Hvel,A(hvel), d > ϵV ⊢ [µ′ = 1, x′f = vtar]F(vtar, xf , µ, hvel)
[µ]

F,A, Hvel,A(hvel), d > ϵV ⊢ [plantf (vtar)]F(vtar, xf , µ, hvel)
[:=]

F,A, Hvel,A(hvel), d > ϵV ⊢ [vf := vtar][plantf (vf )]F(vf , xf , µ, hvel) ▷Fig. 26
[if ]

F,A, Hvel,A(hvel) ⊢ [if (safed) vf := vtar][plantf ]F(vf , xf , µ, hvel) ▷⊤R
[!θ]ACR

F ⊢ [vel(h)!vtar]{A(h),T}[if (safed) vf := vtar][plantf ]F(vf , xf , µ, h) ▷⊤R
∀R

F ⊢ ∀vtar [vel(h)!vtar]{A(h),T}[if (safed) vf := vtar][plantf ]F(vf , xf , µ, h)
[:∗]

F ⊢ [vtar := ∗][vel(h)!vtar]{A(h),T}[if (safed) vf := vtar][plantf ]F(vf , xf , µ, h)
[ch?]AC

F ⊢ [vel(h)?vtar]{A(h),T}[if (safed) vf := vtar][plantf ]F(vf , xf , µ, h)
[ϵ]AC, W[]AC

F ⊢ [vel(h)?vtar]{A(h),T}[if (safed) vf := vtar]{A(h),T}[plantf ]F(vf , xf , µ, h)
[;]AC

F ⊢ [velo(h)]{A(h),T}[plantf ]F(vf , xf , µ, h) ▷Fig. 27

Execution by [;]AC, [∪]AC, [ϵ]AC, W[]AC, and ∧R

F ⊢ [(velo(h) ∪ dist(h));plantf ]{A(h),T}F(vf , xf , µ, h) ▷1TA, R ▷2 R
indAC

Γ ⊢ [follower(h)]{A(h),T}ψf

Fig. 8: Partial proof for follower. The induction indAC uses F ≡ 0≤vf ≤d/ϵ∧vf ≤
V ∧xf +(ϵ−∆(µ, h ↓pos))d/ϵ < val(h ↓pos) as invariant. Formula Hvel is short
for hvel = h ·⟨vel, vtar, µ⟩ and safed is short for d > ϵV . The induction base Γ ⊢ F
(▷1) closes by trace algebra TA and real arithmetic R. Postcondition F ⊢ ψf (▷2)
holds by R. For clarity, we highlight substitutions.

components [4,7,13,19,22,23,26] would need to be rethought to integrate lossy
communication as for every other new application as well.

Hybrid Hoare-logic (HHL) for HCSP [21] is non-compositional [41]. Wang et al.
[41] extend it with assume-guarantee reasoning (AGR) in a way that, unlike
dLCHP, becomes non-compositional again. Unfortunately, their rule for parallel
composition still explicitly unrolls all interleavings in the postcondition for com-
munication traces reflecting the structure of the subprograms. Assumptions and
guarantees in HHL cannot specify the communication history but consider readi-
ness for reasoning about deadlock freedom for future work [41]. Externalizing the
complete observable behavior (and program structure) in this way devalues the
whole point of compositionality [38, Section 1.6.2] but only postpones reasoning
about the exponentially many interleavings. Similarly, Guelev et al. encode the
semantics of the parallel composition into the postcondition [10].

Hoare-style ac-reasoning [16,43,44] including Hoare-style reasoning for HCSP
[10,21,41] lacks symbolic execution as intuitive reasoning principle but manages
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with a distinguished history variable since multiple Hoare-triples cannot be con-
sidered together. dLCHP makes symbolic execution possible despite communica-
tion through explicit trace variables referring to the different possible states of
the history in a proof. The resulting combination of ac-reasoning and dynamic
logic allows flexible switch between first-order, dynamic, and ac-reasoning while
the axioms are simple capturing discrete, continues, or communication behavior.
Unlike dLCHP, which has a global flow of time due to continuous evolution, cal-
culi for distributed real-time computation [16, 17] need to consider the waiting
for termination of time-consuming discrete statements.

Unlike other dL approaches [19, 22, 26], dLCHP has a parallel operator with
built-in time-synchronization as first-class citizen in hybrid programs that can
be arbitrarily nested with other programs, rather than parallel composition of
meta-level components with a explicit time model. Modeling of parallelism by
nondeterministic choice additionally requires extra care to ensure execution pe-
riodicity [22]. In contrast to first-order constraints relating at most consecutive
I/O events [19,22,26], dLCHP can reason about invariants of the whole commu-
nication history. Different from our integrated reasoning about discrete, hybrid,
and communication behavior, Kamburjan et al. [19] separate reasoning about
communication from hybrid systems reasoning.

Quantified differential dynamic logic QdL [32] allows reasoning about par-
allel compositions of an unbounded number of distributed CPSs. Unlike dLCHP

that can reason about interactions of entirely different programs, parallelism in
QdL is restricted to subprograms with a homogeneous structure.

Different from the denotational semantics of CHPs, parallel composition of
hybrid automata [4,8,13,23], just like Hoare-style reasoning about HCSP [10,41],
always fall back to the combinatorial exploration of parallelism. Consequently,
even AGR approaches [4, 8, 12, 23] for hybrid automata that mitigate the state
space explosion for subautomata, eventually resort to large product automata
later. In contrast, dLCHP’s proof rule for parallel composition exploits the built-
in compositionality of its semantics enabling verification of subprograms truly
independent of their environment except for the communication interface. Unlike
ac-formulas in dLCHP, which can capture change, rate, delay, or noise for arbi-
trary pairings of communication channels, overapproximation is limited to coarse
abstractions by timed transition systems [8], components completely dropping
knowledge about continuous behavior [13], or static global contracts [4]. Where
dLCHP inherits complete reasoning about differential equation invariants from
dL, automata approaches are often limited to linear continuous dynamics [8,13].

Concurrent dynamic logic (CDL) has no way for parallel programs to in-
teract [29]. CDL with communication [28] has CSP-style [14] communication
primitives but lacks continuous behavior and a proof calculus for verification.

5 Conclusion

This paper presented a dynamic logic dLCHP for communicating hybrid programs
(CHPs) with synchronous parallel composition in global time. The dLCHP proof
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calculus is the first truly compositional verification approach for communicating
parallel hybrid systems. To this end, dLCHP exploits the flexibility of dynamic
logic by complementing necessity and possibility modalities with assumption-
commitment (ac) modalities. Crucially, this embedding of ac-reasoning enables
compositional specification and verification of parallel hybrid behavior in a way
that tames their complexity. The practical feasibility of dLCHP increases as it
supports reasoning via intuitive symbolic execution in the presence of commu-
nication. All technical subtleties in the semantic construction remain under the
hood such that the actual calculus naturally generalizes dynamic logic reasoning.

Future work includes developing a uniform substitution calculus [33] for
dLCHP in order to enable parsimonious theorem prover implementations [9].
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A Details of the Semantics

We give a formal semantics for terms in Def. 9, prove that the semantics of CHPs
is prefix-closed and total in Proposition 2, and prove that dLCHP is a conservative
extension of dL (see Proposition 1). Moreover, we prove that the operator ◦̂ from
Section 2.2 is associative.

We adapt the semantics of terms from Zwiers [42, p. 113] to our setup with
real arithmetic as base terms. In order to define the semantics of terms, we use
the operators on traces of the following definition:

Definition 8 (Trace operators). Let τ = (τ1, ..., τn) ∈ T be a trace with
communication events τi. Then we define its length |τ | to be n. Additionally,
|ϵ| = 0. For τ ∈ T and k ∈ N, we define at(τ, k) to be τk+1 for 0 ≤ k < |τ |.
Otherwise, we define at(τ, k) = ϵ.

For a communication event ρ = ⟨ch, a, s⟩ or ρ = ⟨h, ch, a, s⟩, we define chan-
nel access chan(ρ) = ch, value access val(ρ) = a, and access to the timestamp
time(ρ) = s. Moreover, we define chan(ϵ) = ch for some ch ∈ Ω, and val(ϵ) = 0,
and time(ϵ) = 0.

Definition 9 (Value of a term). The value [[e]]v ⊆ R ∪ N ∪Ω ∪ T of a term
e ∈ Trm(V,Ω) over the state v is inductively defined in Fig. 9.

[[x]]v = v(x) (x ∈ VR ∪ {µ})
[[c]]v = c

[[η1 + η2]]v = [[η1]]v + [[η2]]v

[[η1 · η2]]v = [[η1]]v · [[η2]]v
[[val(te[ie])]]v = val(at([[te]]v, [[ie]]v))

[[time(te[ie])]]v = time(at([[te]]v, [[ie]]v))

(a) Real terms

[[ch]]v = ch

[[chan(te[ie])]]v = chan(at([[te]]v, [[ie]]v))

(b) Channel terms

[[n]]v = v(n)

[[κ]]v = κ (κ ∈ {0, 1})
[[ie1 + ie2]]v = [[ie1]]v + [[ie2]]v

[[|te|]]v = |[[te]]v|

(c) Integer terms

[[h]]v = v(h)

[[ϵ]]v = ϵ

[[⟨ch, θ1, θ2⟩]]v = ⟨ch, [[θ1]]v, [[θ2]]v⟩
[[te1 · te2]]v = [[te1]]v · [[te2]]v
[[te ↓ C]]v = ([[te]]v) ↓ C

(d) Trace terms

Fig. 9: Inductive definition of the valuation [[e]]v ⊆ R ∪ N ∪ Ω ∪ T of a term
e ∈ Trm(V,Ω) over the state v ∈ S [42, p. 113].

Proposition 2 (Prefix-closed and total). Let γ ∈ CHP(V,Ω) be a program.
Then its semantics [[γ]] ⊆ D is prefix-closed and total, i.e., if (v, τ, w) ∈ [[γ]] and
(τ ′, w′) ⪯ (τ, w), then (v, τ ′, w′) ∈ [[γ]], and ⊥D ⊆ [[γ]].

Proof. The proof is by induction on the structure of program γ. We consider αn

to be structurally smaller than α∗ for all programs α and all n ∈ N. W.l.o.g.
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we assume (τ ′, w′) ≺ (τ, w) in proving prefix-closedness because (v, τ ′, w′) ∈ [[γ]]
trivially holds if (v, τ, w) ∈ [[γ]] and (τ ′, w′) = (τ, w).

1. γ ∈ {x := θ, x := ∗, ?χ, {x′ = θ&χ}}, then [[γ]] = ⊥D ∪U with U ⊆ D. Now,
let (v, τ, w) ∈ [[γ]] and (τ ′, w′) ≺ (τ, w). Then τ ′ = ϵ since τ = ϵ, and w′ = ⊥.
Hence, (v, τ ′, w′) ∈ ⊥D ⊆ [[γ]]. Finally, [[γ]] is total because ⊥D ⊆ [[γ]].

2. γ ∈ {ch(h)!θ, ch(h)?x}, then let (v, τ, w) ∈ [[γ]] and (τ ′, w′) ≺ (τ, w). Since
(v, τ, w) ∈ [[γ]] iff (τ, w) ⪯ (τ̃ , w̃) for some (τ̃ , w̃), we obtain (v, τ ′, w′) ∈ [[γ]]
because (τ ′, w′) ≺ (τ, w) ⪯ (τ̃ , w̃). Since (ϵ,⊥) ⪯ (τ̃ , w̃) for any (τ̃ , w̃), we
have (v, ϵ,⊥) ∈ [[γ]] for each v ∈ S such that [[γ]] is total.

3. γ ≡ α ∪ β, then [[α]] and [[β]] are prefix-closed and total by IH. Then prefix-
closedness and totality of [[γ]] follows easily from [[γ]] = [[α]] ∪ [[β]].

4. γ ≡ α;β, then let (v, τ, w) ∈ [[γ]] = [[α]]⊥ ∪ [[α]] ▷ [[β]] and (τ ′, w′) ≺ (τ, w).
Thus, w′ = ⊥ and τ ′ ⪯ τ . Observe that [[α]]⊥ is prefix-closed because [[α]]
is prefix-closed by IH. So if (v, τ, w) ∈ [[α]]⊥, then (v, τ ′, w′) ∈ [[α]]⊥ ⊆ [[γ]].
If (v, τ, w) ∈ [[α]] ▷ [[β]], then u ̸= ⊥ exists such that (v, τ1, u) ∈ [[α]], and
(u, τ2, w) ∈ [[β]], and τ = τ1 · τ2. If τ1 is fully contained in τ ′, i.e., τ ′ = τ1 · τ ′2
for some τ ′2, then τ

′
2 ⪯ τ2 and (τ ′2, w

′) ⪯ (τ2, w). Since [[β]] is prefix-closed by
IH, we obtain (u, τ ′2, w

′) ∈ [[β]], which implies (v, τ ′, w′) ∈ [[α]] ▷ [[β]] ⊆ [[γ]].
If otherwise τ ′ ≺ τ1 ⪯ τ , where τ1 is not fully contained in τ ′, we have
(τ ′, w′) ⪯ (τ1, u) since w

′ = ⊥. Thus, (v, τ ′, w′) ∈ [[α]] because [[α]] is prefix-
closed by IH. Finally, (v, τ ′, w′) ∈ [[α]]⊥ ⊆ [[γ]].
Since [[α]] is total by IH, ⊥D ⊆ [[α]], which implies ⊥D[[α]]⊥ ⊆ [[α;β]].

5. γ ≡ α∗, then [[αn]] is prefix-closed for all n ∈ N by IH as we considered αn to
be structurally smaller than α∗. This easily implies that [[α∗]] =

⋃
n∈N[[α

n]] is
prefix-closed. Finally, [[γ]] is total because [[α]] ⊆ [[γ]] and [[α]] is total by IH.

6. γ ≡ α1 ∥ α2, then let (v, τ, w) ∈ [[γ]] and (τ ′, w′) ≺ (τ, w). Thus, w′ = ⊥ and
τ ′ ⪯ τ . Moreover, (v, τ ↓ αj , wαj

) ∈ [[αj ]] for j = 1, 2, and wα1
(µ) = wα2

(µ),
and τ = τ ↓ γ, and w = wα1 ⊕ wα2 . Now, observe that τ ′ ↓ αj ⪯ τ ↓ αj ,
which implies (τ ′ ↓ αj , w′

αj
) ⪯ (τ ↓ αj , wαj ) for w′

αj
= ⊥. Thus, (v, τ ′ ↓

αj , w
′
αj
) ∈ [[αj ]] because [[αj ]] is prefix-closed by IH. Since ⊥ = ⊥ ⊕ ⊥, we

have w′ = w′
α1

⊕w′
α2
. Moreover, τ ′ = τ ′ ↓ γ and τ ′ is chronological as prefix

τ ′ ⪯ τ of the chronological trace τ . Finally, (v, τ ′, w′) ∈ [[γ]].
For each v ∈ S and j = 1, 2, some (v, ϵ,⊥) ∈ [[αj ]] since [[αj ]] is total by IH.
Then [[γ]] is total because (v, ϵ,⊥) ∈ [[γ]] for each v ∈ S since ⊥(µ) = ⊥(µ),
and ϵ = ϵ ↓ γ, and ⊥ = ⊥⊕⊥. ⊓⊔

In preparation for the proof of conservative extension (Proposition 1), we
roughly recap dL in the following [30]:

Remark 2 (dL). Terms TrmdL = Q[VR] ⊂ Trm(V,Ω) in dL are the polynomials
in VR over Q. Moreover, hybrid programs HPdL ⊂ CHP(V,Ω) in dL are gener-
ated by the following grammar: α, β ::= x := θ | x := ∗ | ?χ | {x′ = θ & χ} |
α;β | α∪ β | α∗, where θ ∈ TrmdL and χ ∈ FOLR(VR) is a formula of first-order
real-arithmetic. Finally, FmldL denotes the set of all formulas in dL that is gen-
erated by the grammar φ,ψ ::= θ1 ∼ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ → ψ | ∀xφ |
∃xφ | [α]ψ | ⟨α⟩ψ, where ∼ ∈ {=,≥}. Note that FOLR(VR) ⊂ FmldL.
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A real state is a map from VR to R and R denotes the set of all real states.
With [[·]]dL ⊆ R we denote semantics of terms and with ⊨dL ⊆ R × FmldL the
satisfaction relation in dL, respectively. The semantics [[α]]dL ⊆ R×R of a hybrid
program α ∈ HPdL is inductively defined as follows:

[[x := θ]]dL = {(v, w) ∈ R×R | w = v[[θ]]dLvx }
[[x := ∗]]dL = {(v, w) ∈ R×R | w(y) = v(y) for all y ̸= x}
[[{x′ = θ & χ}]]dL = {(φ(0), φ(r)) ∈ R×R |

φ(ζ) ⊨dL x
′ = θ ∧ χ and φ(ζ) = φ(0) on {x}∁ for all ζ ∈ [0, r]

for a solution φ : [0, r] → R with φ(ζ)(x′) =
dφ(t)(x)

dt
(ζ)}

[[?χ]]dL = {(v, v) ∈ R×R | v ⊨dL χ}
[[α ∪ β]]dL = [[α]]dL ∪ [[β]]dL

[[α;β]]dL = [[α]]dL ◦ [[β]]dL (◦ is composition of relations)

[[α∗]]dL =
⋃
n∈N

[[αn]]dL

For a state v ∈ S, the real state v|VR ∈ R is the restriction of v to VR. The
restriction U |R×R of a set U ⊆ S × Trec × S⊥ to R×R is defined by

U |R×R = {(v|VR , w|VR) ∈ R×R | (v, τ, w) ∈ U with w ̸= ⊥}.

In preparation for the proof of Proposition 1, Lemma1 states that dLCHP is
conservative extension of dL w.r.t. terms and formulas in hybrid programs HPdL.
Building on this Lemma2 shows that the semantics of CHPs is a conservative
extension of the program semantics in dL. We continue to denote the semantics
of terms and programs in dLCHP by [[·]] and the satisfaction relation by ⊨.

Lemma 1 (Conservative extension of program parts). Let θ ∈ TrmdL be
a dL-term and χ ∈ FOLR(VR) a formula of first-order real arithmetic. Then for
all states v ∈ S the following holds:

1. [[θ]]dLv|VR = [[θ]]v
2. v|VR ⊨dL χ iff v ⊨ χ

Proof. The proof is by induction on the structure of θ and χ, respectively. ⊓⊔

Lemma 2 (Conservative program semantics). The program semantics of
dLCHP is a conservative extension of the program semantics in dL. That is,

[[γ]]dL = [[γ]]|R×R = {(v|VR , w|VR) | (v, τ, w) ∈ [[γ]] with w ̸= ⊥}

for a hybrid program γ ∈ HPdL ⊂ CHP(V,Ω).

Proof. The proof is by induction on the structure of program γ. We consider αn

to be structurally smaller than α∗ for all programs α and all n ∈ N.
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1. For γ ∈ {x := θ, x := ∗, ?χ, {x′ = θ & χ}}, we have [[γ]] = ⊥D ∪ Mγ

for some Mγ ⊆ S × {ϵ} × S. Observe that [[γ]]|R×R = Mγ |R×R because
⊥D = S × {ϵ} × {⊥}. Finally, [[γ]]dL = Mγ |R×R by definition of [[γ]]dL
and Mγ . For instance, in case γ ≡ x := θ, we conclude with Mγ |R×R =

{(v, ϵ, w) | w = v
[[θ]]v
x }|R×R = {(v|VR , w|VR) | w = v

[[θ]]v
x } = {(v|VR , w|VR) |

w|VR = (v|VR)
[[θ]]dLv|VR
x } = [[x := θ]]dL because [[θ]]v = [[θ]]dLv|VR by Lemma1.

2. For γ ≡ α ∪ β, observe that [[α]]|R×R ∪ [[β]]|R×R = ([[α]] ∪ [[β]])|R×R. Then

by IH, [[γ]]dL = [[α]]dL ∪ [[β]]dL
IH
= [[α]]|R×R ∪ [[β]]|R×R = [[γ]]|R×R.

3. For γ ≡ α;β, we have [[γ]]|R×R = [[α]]⊥|R×R ∪ ([[α]] ▷ [[β]])|R×R since re-
striction · |R×R distributes over union ∪. Observe that [[α]]⊥|R×R = ∅ and
([[α]] ▷ [[β]])|R×R = [[α]]|R×R ◦ [[β]]|R×R, where ◦ is composition of relations.

Thus, [[γ]]dL = [[α]]dL ◦ [[β]]dL
IH
= [[α]]|R×R ◦ [[β]]|R×R = [[γ]]|R×R by IH.

4. γ ≡ α∗, then (v, w) ∈ [[α∗]]dL iff (v, w) ∈ [[αn]]dL for some n ∈ N iff, by IH,
(v, w) ∈ [[αn]]|R×R for some n ∈ N iff (v, w) ∈ [[α∗]]|R×R. ⊓⊔

Proof (Proposition 1). We have to prove that a formula φ ∈ Fml(V,Ω) ∩ FmldL
is valid in dLCHP iff it is valid in dL, where φ is valid in dL if v|VR ⊨dL φ for all
v ∈ S, and φ is valid in dLCHP if v ⊨ φ for all v ∈ S. The proof is by induction
on the structure of φ:

1. φ ≡ θ1 ∼ θ2, where ∼ ∈ {=,≥}, then v ⊨ θ1 ∼ θ2 iff [[θ1]]v ∼ [[θ2]]v iff, by
Lemma1, [[θ1]]dLv|VR ∼ [[θ2]]dLv|VR iff v|VR ⊨dL e1 ∼ e2.

2. For the propositional connectives ¬,∧,∨,→ and quantifiers ∀,∃ the proof is
straightforward by IH.

3. For φ ≡ [α]ψ, observe (v|VR , w|VR) ∈ [[α]]dL iff (v, τ, w) ∈ [[α]] with w ̸= ⊥ by
Lemma2 and τ = ϵ since α ∈ CHP(V,Ω). Thus, v ⊨ [α]ψ iff w · τ ⊨ ψ for all
(v, τ, w) ∈ [[α]] with w ·τ = w ̸= ⊥ iff, by IH, w|VR ⊨dL ψ for all (v, τ, w) ∈ [[α]]
with w ̸= ⊥ iff w|VR ⊨dL ψ for all (v|VR , w|VR) ∈ [[α]]dL iff v|VR ⊨dL [α]ψ. ⊓⊔

Lemma3 shows that the composition operator ◦̂ is associative. See Section 2.2
for the definition of the operators involved.

Lemma 3 (Composition is associative). Let U,M,L ⊆ S×Trec×S⊥. Then
U ◦̂ (M ◦̂ L) = (U ◦̂M) ◦̂ L.

Proof. Let (v, τ, w) ∈ U ◦̂ (M ◦̂ L). If (v, τ, w) ∈ U⊥, then (v, τ, w) ∈ U⊥ ∪
(U ▷M)⊥ ⊆ (U ◦̂M)⊥ ⊆ (U ◦̂M) ◦̂ L. If (v, τ, w) ∈ U ▷ (M ◦̂ L), computations
(v, τ1, u) ∈ U and (u, τ2, w) ∈ (M ◦̂ L) with τ = τ1 · τ2 exist. Now, if (u, τ2, w) ∈
M⊥, we have (v, τ, w) ∈ U ▷M⊥ = (U ▷M)⊥ ⊆ (U ◦̂M)⊥. If (u, τ2, w) ∈M ▷L,
then (v, τ, w) ∈ U ▷ (M ▷ L). Since ▷ is associative, (v, τ, w) ∈ (U ▷ M) ▷ L ⊆
(U ◦̂M) ▷ L ⊆ (U ◦̂M) ◦̂ L.

Conversely, let (v, τ, w) ∈ (U ◦̂M)◦̂L. If (v, τ, w) ∈ (U ◦̂M)⊥, then (v, τ, w) ∈
U⊥ or (v, τ, w) ∈ (U ▷M)⊥. If (v, τ, w) ∈ U⊥, we conclude U⊥ ⊆ U ◦̂ (M ◦̂L). If
(v, τ, w) ∈ (U ▷M)⊥, computations (v, τ1, u) ∈ U and (u, τ2, w) ∈ M⊥ ⊆ M ◦̂ L
with τ = τ1 · τ2 exist. Thus, (v, τ, w) ∈ U ▷ (M ◦̂ L) ⊆ U ◦̂ (M ◦̂ L). Finally, if
(v, τ, w) ∈ (U ◦̂M) ▷ L, computations (v, τ1, u) ∈ U ◦̂M and (u, τ2, w) ∈ L with
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τ = τ1 ·τ2 exist. Since u ̸= ⊥, (v, τ1, u) ∈ U ▷M such that (v, τ, w) ∈ (U ▷M)▷L.
Thus, (v, τ, w) ∈ U ▷(M▷L) ⊆ U ▷(M ◦̂L) ⊆ U ◦̂(M ◦̂L) because ▷ is associative.

⊓⊔

B Static Semantics

The static semantics captures with free variables FV (·), which variables poten-
tially influence terms, programs, or formulas, and with bound variables BV (·),
which variables are written by a program. Following the static semantics of
dL [33] in general, we give more precise coincidence properties, which take the
communication history into account. Therefore, we adapt the notions of accessed
channels and communication-aware coincidence for terms from Zwiers [42] and
lift them to CHPs and formulas of dynamic logic.

Remark 3 (Communication-awareness). Communication-aware coincidence re-
flects that the portion of a communication trace v(h) a formula over trace vari-
able h depends on shrinks with projections of h. For example, |h| > 0 depends on
the full trace v(h) but |h↓ch| > 0 only on v(h)↓ch. The sets of accessed channels
CN(e), and CN(φ) in terms e and formulas φ collect the relevant channels of all
communication traces v(h) with h ∈ VT .

Definition 10 (Bound variables). The set of bound variables BV (γ) of a
program γ ∈ CHP(V,Ω) is inductively defined in Fig. 10.

BV(x := e) = BV(x := ∗) = {x}
BV({x′ = θ & χ}) = {x, µ}

BV(?χ) = ∅
BV(ch(h)!θ) = {h}
BV(ch(h)?x) = {h, x}

BV(α ∪ β) = BV(α;β) = BV(α ∥ β) = BV(α) ∪BV(β)
BV(α∗) = BV(α)

Fig. 10: Inductive definition of the set of bound variables BV (γ) of a program
γ ∈ CHP(V,Ω).

Def. 10 is as usual except that continuous evolution silently (no syntactic
occurrence) binds the global time µ since it evolves with every ODE. The bound
effect property in Lemma4 takes into account that the worlds reachable by a
program consist of the final state and the communication as opposed to only
considering the final state.

Lemma 4 (Bound effect property). The set of bound variables BV (γ) has
the bound effect property for a program γ ∈ CHP(V,Ω). That is, v = w on
BV (γ)∁ ∪ VT and v = w · τ on BV (γ)∁ for all (v, τ, w) ∈ [[γ]] with w ̸= ⊥.
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Proof. Let REC(γ) ⊆ VT be the set of recorder variables in γ. Then τ(h) = ϵ
for all h ̸∈ REC(γ) by an induction on the structure of γ, where τ(h) is the
subtrace of τ of communication recorded by h. Hence, w = w · τ on REC(γ)∁.
Since REC(γ) ⊆ BV (γ), we obtain v = w = w · τ on BV (γ)∁ ∩ REC(γ)∁ =
(BV (γ) ∪ REC(γ))∁ = BV (γ)∁ if only v = w on BV (γ)∁. The latter also shows
v = w on BV (α)∁ ∪ VT because v = w on VT by another induction on γ. Now,
we prove v = w on BV (γ)∁ by induction on the structure of γ. We consider αn

to be structurally smaller than α∗ for all programs α and all n ∈ N.

1. γ ∈ {x := θ, x := ∗, ch(h)?x} and (v, τ, w) ∈ [[γ]], then w = vax for some
a ∈ R. Thus, v = w on {x}∁ = BV (γ)∁.

2. γ ≡ {x′ = θ & χ} and (v, τ, w) ∈ [[γ]], then a solution φ : [0, s] → S exists
with φ(ζ) = v on {x, µ}∁ for all ζ ∈ [0, s] and w = φ(s). Thus, v = w on
{x, µ}∁ = BV (γ)∁.

3. γ ∈ {?χ, ch(h)!θ} and (v, τ, w) ∈ [[γ]], then v = w. Thus, v = w on BV (γ)∁.
4. γ ≡ α;β and (v, τ, w) ∈ [[γ]], then (v, τ, w) ∈ [[α]] ▷ [[β]] ⊆ [[γ]]. Thus, u ̸= ⊥

exists such that (v, τ1, u) ∈ [[α]], (u, τ2, w) ∈ [[β]], and τ = τ1 · τ2. By IH,
v = u on BV (α)∁ and u = w on BV (β)∁. Thus, v = w on BV (α)∁ ∩BV (β)∁ =
(BV (α) ∪BV (β))∁ = BV (α;β)∁.

5. γ ≡ α ∪ β and (v, τ, w) ∈ [[γ]], then (v, τ, w) ∈ [[α]] or (v, τ, w) ∈ [[β]]. By IH,
v = w on BV (α)∁ or on BV (β)∁, respectively. Always, v = w on BV (α)∁ ∩
BV (β)∁ = (BV (α) ∪BV (β))∁ = BV (α ∪ β)∁.

6. γ ≡ α∗ and (v, τ, w) ∈ [[γ]], then (v, τ, w) ∈ [[αn]] for some n ∈ N. Since αn
is structurally smaller than α∗, we obtain v = w on BV (αn)∁ by IH. Finally,
BV (αn)∁ ⊇ BV (α)∁ = BV (α∗)∁ (note that α0 ≡ ?T).

7. γ ≡ α ∥ β and (v, τ, w) ∈ [[γ]], then (v, τ ↓ α,wα) ∈ [[α]], (v, τ ↓ β,wβ) ∈ [[β]],

and w = wα ⊕ wβ . By IH, v = wβ on BV (β)∁. Moreover, wβ = w on

BV (α)∁ by definition of ⊕ in Section 2.2. Thus, v = w on BV (α)∁∩BV (β)∁ =
(BV (α) ∪BV (β))∁ = BV (α ∥ β)∁. ⊓⊔

Definition 11 (Parameters of terms). The sets of free variables FV (e) and
accessed channels CN(e) of a term e ∈ Trm(V,Ω) are inductively defined in
Fig. 11.

Unsuprisingly, a trace variable h potentially accesses all channelsΩ by Def. 11,
and with a projection on C the accessed channels shrink by C. The communi-
cation item ⟨ch, θ1, θ2⟩ does not access any channels since θ1, θ2 ∈ FOLR(VR).

For use in the coincide properties, we lift projection for traces to states by
defining that v ↓C = v on VR ∪ VN and (v ↓C)(h) = v(h) ↓C for all h ∈ VT and
C ⊆ Ω. As for traces, we often write v ↓ e instead of v ↓ CN(e).

Lemma 5 (Coincidence for terms). The pair of free variables FV (e) and
accessed channels CN(e) has the communication-aware coincidence property for
a term e ∈ Trm(V,Ω). That is, if v ↓ e = ṽ ↓ e on FV (e), then [[e]]v = [[e]]ṽ. In
particular, [[e]]v = [[e]]v if v = ṽ on FV (e).

Proof. W.l.o.g. we push down projections in e as far as possible by applying
the axioms ϵ↓, · ↓, and ↓∩, and ↓∈, and ↓̸∈ (see Fig. 15) from left to right.
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FV(z) = {z} (z ∈ V )

FV(κ) = ∅
FV(e1 ▷◁ e2) = FV(e1) ∪ FV(e2)
FV(f(te, ie)) = FV(te) ∪ FV(ie)

FV(|te|) = FV(te)

FV(⟨ch, θ1, θ2⟩) = FV(θ1) ∪ FV(θ2)
FV(te ↓ C) = FV(te)

CN(h) = Ω (h ∈ VT )

CN(z) = CN(κ) = ∅ (z ̸∈ VT )

CN(e1 ▷◁ e2) = CN(e1) ∪ CN(e2)

CN(f(te, ie)) = CN(te) ∪ CN(ie)

CN(|te|) = CN(te)

CN(⟨ch, θ1, θ2⟩) = ∅
CN(te ↓ C) = CN(te) ∩ C

Fig. 11: Inductive definition of free variables FV (e) and accessed channels CN(e)
of a term e ∈ Trm(V,Ω), where z ∈ V , κ is a constant of any sort, ▷◁ ∈ {+, ·}
is any operator, and f(te, ie) ∈ {chan(te[ie]), val(te[ie]), time(te[ie])} is a term
over te and ie.

This is justified since valuation [[e]], free variables FV (e), and accessed channels
CN(e) are invariant under this rewritings. In the resulting normal form only raw
trace variables occur in the scope of projections. Crucially, the communication
item ⟨ch, θ1, θ2⟩ does not contain further trace variables since θ1, θ2 ∈ FOLR(VR).
Now, the proof is by induction on the structure of the term e:

1. e ≡ z with z ∈ V , then FV (e) = {z}. If z ∈ VR∪N ∪ {µ}, then v(z) = ṽ(z) by
premise. If z ∈ VT , then v(z) = v(z) ↓ e = ṽ(z) ↓ e = ṽ(z) since CN(e) = Ω
and v ↓ e = ṽ ↓ e on {z} by premise. Thus, [[e]]v = v(z) = ṽ(z) = [[e]]ṽ.

2. e ≡ κ, where κ is a constant of any sort, then [[e]]v = κ = [[e]]ṽ.
3. e ≡ e1 ▷◁ e2 with ▷◁ ∈ {+, ·}, then v ↓ e = ṽ ↓ e on FV (ej) since FV (ej) ⊆
FV (e). For h ∈ VT , observe that v(h) ↓ D = ṽ(h) ↓ D implies v(h) ↓ E =
ṽ(h) ↓ E if E ⊆ D ⊆ Ω. Hence, we obtain v ↓ ej = ṽ ↓ ej on FV (ej) from
CN(ej) ⊆ CN(e). By IH, we conclude as follows:

[[e]]v = [[e1]]v ▷◁ [[e2]]v
IH
= [[e1]]ṽ ▷◁ [[e2]]ṽ = [[e]]ṽ

4. e ∈ {chan(te[ie]), val(te[ie]), time(te[ie]), ⟨ch, θ1, θ2⟩, |te|}, then we conclude
similar to the last case by IH.

5. e ≡ te ↓ C, then te ≡ h for some h ∈ VT since e is in normal form by
assumption. From CN(e) = C and FV (e) = {h}, we obtain v(h)↓C = ṽ(h)↓C
by premise such that [[e]]v = v(h) ↓ C = ṽ(h) ↓ C = [[e]]ṽ. ⊓⊔

We adapt must-bound variables from dL [33] leading to a fine-grained defi-
nition of free variables in formulas and programs. Defining FV ([α]ψ) as FV (α)∪
FV (ψ) would be sound w.r.t. the coincidence property for formulas but impre-
cise because [x := 0]x ≥ 0 does not depend on x. However, defining FV ([α]ψ)
as FV (α) ∪ (FV (ψ) \BV (α)) is unsound because [x := 0 ∪ y := 0]x ≥ 0 depends
on x as x is not bound on all execution paths. The must-bound variables are the
variables that are bound on all execution paths of a program. Hence, they may
be removed from FV (ψ) soundly in FV ([α]ψ) = FV (α) ∪ (FV (ψ) \MBV (α)).

Definition 12 (Must-bound variables). The set of must-bound variables
MBV (γ) of a program γ ∈ CHP(V,Ω) is inductively defined in Fig. 12.
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MBV(α) = BV(α) (α is any atomic program)

MBV(α ∪ β) =MBV(α) ∩MBV(β)
MBV(α;β) =MBV(α ∥ β) =MBV(α) ∪MBV(β)

MBV(α∗) = ∅

Fig. 12: Inductive definition of the must-bound variables MBV (γ) of a program
γ ∈ CHP(V,Ω).

Definition 13 (Free variables of programs). The set of free variables FV (γ)
of a program γ ∈ CHP(V,Ω) is inductively defined in Fig. 13.

FV(x := θ) = FV(θ)

FV(x := ∗) = ∅
FV(?χ) = FV(χ)

FV({x′ = θ & χ}) = {x, µ} ∪ FV(θ) ∪ FV(χ)
FV(ch(h)!θ) = {h, µ} ∪ FV(θ)
FV(ch(h)?x) = {h, µ}

FV(α;β) = FV(α) ∪ (FV(β) \MBV(α))
FV(α ∪ β) = FV(α ∥ β) = FV(α) ∪ FV(β)

FV(α∗) = FV(α)

Fig. 13: Inductive definition of free variables FV (γ) of a program γ ∈ CHP(V,Ω).

Def. 13 is as usual except that a continuous evolution silently (no syntactic
occurrence) depends on the global time µ as it evolves like x with the ODE.
Moreover, µ is free in ch(h)!θ and ch(h)?x because the current time is recorded
as timestamp for each communication event.

Definition 14 (Free parameters of formulas). The sets of free variables
FV (ϕ) and accessed channels CN(ϕ) of a formula ϕ ∈ Fml(V,Ω) is inductively
defined in Fig. 14.

Lemma 6 (Coincidence for formulas). The pair of free variables FV (ϕ) and
accessed channels CN(ϕ) has the communication-aware coincidence property for
a formula ϕ ∈ Fml(V,Ω): If v ↓ ϕ = ṽ ↓ ϕ on FV (ϕ), then: v ∈ [[ϕ]] iff ṽ ∈ [[ϕ]].

Lemma 7 (Coincidence for programs). The set of free variables FV (γ) has
the communication-aware coincidence property for a program γ ∈ CHP(V,Ω): If
v ↓C = ṽ ↓C on X ⊇ FV (γ) with C ⊆ Ω and (v, τ, w) ∈ [[γ]], then (ṽ, τ̃ , w̃) ∈ [[γ]]
exists with w ↓ C = w̃ ↓ C on X ∪MBV (γ), and τ = τ̃ , and (w = ⊥ iff w̃ = ⊥).

Proof (Lemma6 and Lemma7). We generalize the proof of the coincidence prop-
erties for dL [33, Lemma 17] to CHPs and formulas featuring ac-modalities. The
proof is by simultaneous induction on the structure of formulas and programs.
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FV(e1 ∼ e2) = FV(e1) ∪ FV(e2)
FV(¬φ) = FV(φ)

FV(φ⇌ ψ) = FV(φ) ∪ FV(ψ)
FV(Qz. φ) = FV(φ) \ {z}
FV([α]ψ) = FV(α) ∪ (FV(ψ) \MBV(α))

FV([α]{A,C}ψ) = FV([α]ψ) ∪ FV(A) ∪ FV(C)

CN(e1 ∼ e2) = CN(e1) ∪ CN(e2)

CN(¬φ) = CN(φ)

CN(φ⇌ ψ) = CN(φ) ∪ CN(ψ)

CN(Qz. φ) = CN(φ)

CN([α]ψ) = CN(ψ)

CN([α]{A,C}ψ) = CN([α]ψ) ∪ CN(A) ∪ CN(C)

Fig. 14: Inductive definition of free variables FV (ϕ) and accessed channels CN(ϕ)
of a formula ϕ ∈ Fml(V,Ω), where ∼ ∈ {=,≥,⪯}, and ⇌ ∈ {∧,∨,→}, and
Q ∈ {∀,∃}.

We start with induction on formula ϕ. By premise, v ↓ ϕ = ṽ ↓ ϕ on FV (ϕ).
Then we prove that v ∈ [[ϕ]] implies ṽ ∈ [[ϕ]]. For the converse, swap v and ṽ. We
consider ∀z ¬φ to be structurally smaller than ∃z φ for any formula φ. Note that
v ↓D = ṽ ↓D implies v ↓E = ṽ ↓E if E ⊆ D ⊆ Ω. We use this fact throughout
the proof without further mentioning it.

1. v ⊨ e1 ∼ e2, where ∼ ∈ {=,≥,⪯}, iff [[e1]]v ∼ [[e2]]v holds. For j = 1, 2,
FV (ej) ⊆ FV (e1 ∼ e2) and CN(ej) ⊆ CN(e1 ∼ e2) such that v ↓ej = ṽ ↓ej on
FV (ej). Hence, [[ej ]]v = [[ej ]]ṽ for j = 1, 2 by coincidence for terms (Lemma5),
which implies [[e1]]ṽ ∼ [[e2]]ṽ. Thus, ṽ ⊨ e1 ∼ e2.

2. v ⊨ ¬φ implies v ̸∈ [[φ]]. By IH, ṽ ̸∈ [[φ]] since FV (¬φ) = FV (φ) and
CN(¬φ) = CN(φ). Hence, ṽ ⊨ ¬φ.

3. v ⊨ φ ∧ ψ iff v ⊨ φ and v ⊨ ψ. Since FV (χ) ⊆ FV (φ ∧ ψ) and CN(χ) ⊆
CN(φ ∧ ψ) for χ ∈ {φ,ψ}, we have v ↓ χ = ṽ ↓ χ on FV (χ). Then ṽ ⊨ φ and
ṽ ⊨ ψ by IH. Finally, ṽ ⊨ φ ∧ ψ.

4. The cases φ ∨ ψ and φ→ ψ can be handled analogously to φ ∧ ψ.
5. v ⊨ ∀z φ iff vaz ⊨ φ for all a ∈ type(z). We have vaz ↓φ = ṽaz ↓φ on FV (φ) since
v ↓ φ = ṽ ↓ φ on FV (∀z φ) = FV (φ) \ {z} and CN(∀z φ) = CN(φ). Hence, by
IH, ṽaz ⊨ φ for all a ∈ type(z), which implies ṽ ⊨ ∀z φ.

6. v ⊨ ∃z φ iff v ⊭ ∀z ¬φ, which implies ṽ ⊭ ∀z ¬φ by IH because FV (∀z ¬φ) =
FV (∃z φ), and CN(∀z ¬φ) = CN(∃z φ), and we considered ∀z ¬φ to be struc-
turally smaller than ∃z φ. Hence, ṽ ⊨ ∃z φ.

7. ϕ ≡ [α]ψ, then let v ⊨ ϕ. To show ṽ ⊨ ϕ, let (ṽ, τ̃ , w̃) ∈ [[α]] with w̃ ̸= ⊥. Since
v ↓ ϕ = ṽ ↓ ϕ on FV (ϕ) ⊇ FV (α), a computation (v, τ, w) ∈ [[α]] with w ̸= ⊥,
and w ↓ϕ = w̃ ↓ϕ on FV (ϕ)∪MBV (α), and τ = τ̃ exists by the simultaneous
IH. Now, w ·τ ⊨ ψ because v ⊨ ϕ. By FV (ϕ) = FV (α)∪(FV (ψ)\MBV (α)), we
obtain w↓ϕ = w̃↓ϕ on FV (ψ) ⊆ FV (ϕ)∪MBV (α), which implies w↓ψ = w̃↓ψ
on FV (ψ) by CN(ϕ) = CN(ψ). Furthermore, (w · τ) ↓ψ = (w̃ · τ̃) ↓ψ because
τ = τ̃ . Thus, IH is applicable on w · τ ⊨ ψ such that w̃ · τ̃ ⊨ ψ by IH.

8. ϕ ≡ [α]{A,C}ψ, then let v ⊨ ϕ. In order to show ṽ ⊨ ϕ let (ṽ, τ̃ , w̃) ∈ [[α]].
Since v ↓ ϕ = ṽ ↓ ϕ on FV (ϕ) ⊇ FV (α), a computation (v, τ, w) ∈ [[α]] with
w ↓ ϕ = w̃ ↓ ϕ on FV (ϕ)∪MBV (α), and τ = τ̃ , and (w = ⊥ iff w̃ = ⊥) exists
by the simultaneous IH.
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For (commit), assume {ṽ · τ ′ | τ ′ ≺ τ̃} ⊨ A. Then {v · τ ′ | τ ′ ≺ τ} ⊨ A by IH
since τ̃ = τ and v ↓ ϕ = ṽ ↓ ϕ on FV (ϕ) implies v ↓ A = ṽ ↓ A on FV (A) by
FV (A) ⊆ FV (ϕ) and CN(A) ⊆ CN(ϕ). Hence, v · τ ⊨ C because v ⊨ ϕ, which
in turn implies ṽ · τ̃ ⊨ C by IH because (v · τ) ↓ C = (ṽ · τ̃) ↓ C on FV (C).

For (post), assume w̃ ̸= ⊥ and {ṽ · τ ′ | τ ′ ⪯ τ̃} ⊨ A. Since v ↓ ϕ = ṽ ↓ ϕ on
FV (ϕ) ⊇ FV (A) with CN(ϕ) ⊇ CN(A), we obtain {v · τ ′ | τ ′ ⪯ τ} ⊨ A by
IH. Hence, w · τ ⊨ ψ by v ⊨ ϕ. Moreover, w ↓ ψ = w̃ ↓ ψ on FV (ψ) because
FV (ψ) ⊆ FV (ϕ) ∪MBV (α) and CN(ψ) ⊆ CN(ϕ). Finally, w̃ · τ ⊨ ψ by IH.

Now, we proceed with induction on program α. By premise, v ↓C = ṽ ↓C on
X ⊇ FV (γ). W.l.o.g.X∩VT = ∅ because v = w and ṽ = w̃ both on (BV (α)\VT )∁
by the bound effect property (Lemma4) such that w̃ ↓C = ṽ ↓C = v ↓C = w ↓C
on X ∩ VT . Hence, v = v ↓ C = ṽ ↓ C = ṽ on X. Further, we consider αn to be
structurally smaller than α∗ for all programs α and all n ∈ N, and x := ∗; ch(h)!x
to be smaller than ch(h)?x.

If γ is an atomic non-communicating program, we can handle (v, τ, w) ∈ [[γ]]
with w = ⊥ uniformly as follows: Let (v, τ,⊥) ∈ [[γ]]. Then τ = ϵ, and we
define τ̃ = ϵ and w̃ = ⊥. By totality and prefix-closedness (Proposition 2),
(ṽ, τ̃ , w̃) ∈ [[γ]]. Further, w = w̃ on X ∪ MBV (γ) since ⊥ = ⊥ on any set of
variables. Therefore, we assume w ̸= ⊥ w.l.o.g. in the first four cases below.

1. (v, τ, w) ∈ [[x := θ]], then τ = ϵ and w = v
[[θ]]v
x . We define τ̃ = ϵ and w̃ = ṽ

[[θ]]ṽ
x

such that (ṽ, τ̃ , w̃) ∈ [[x := θ]]. By coincidence (Lemma5), w(x) = [[θ]]v =
[[θ]]ṽ = w̃(x) since v = ṽ on X ⊇ FV (x := θ) = FV (θ). Moreover, w = w̃ on
X \ {x} because v = ṽ on X, and v = w and ṽ = w̃ on {x}∁. Hence, w = w̃
on X ∪MBV (x := θ) since MBV (x := θ) = {x}, and τ = τ̃ , and w̃ ̸= ⊥.

2. (v, τ, w) ∈ [[x := ∗]], then τ = ϵ and w = vax for some a ∈ R. We define
τ̃ = ϵ and w̃ = ṽax. Obviously v = w and ṽ = w̃ on {x}∁. Thus, v = ṽ on X
implies w = w̃ on X \{x}. Moreover, w(x) = vax(x) = ṽax(x) = w̃(x). Overall,
(ṽ, τ̃ , w̃) ∈ [[α]] exists with w = w̃ on X ∪MBV (x := ∗) since MBV (x := ∗) =
{x}. Finally, τ = τ̃ and w̃ ̸= ⊥.

3. γ ≡ {x′ = θ&χ} and (v, τ, w) ∈ [[γ]], then τ = ϵ and a solution φ : [0, s] → S
exists with v = φ(0), and w = φ(s), and φ(ζ) ⊨ x′ = θ ∧ χ and φ(ζ)(µ) =

v(µ) + ζ for all ζ ∈ [0, s], where φ(ζ)(x′) = dφ(t)(x)
dt (ζ), and φ(ζ)(y) = v(y)

for y ̸∈ {x, µ}. We define a solution φ̃ : [0, s] → S of equal duration s for
ζ ∈ [0, s], by φ̃(ζ) = φ(ζ) on {x, µ} and if y ̸∈ {x, µ} by φ̃(ζ)(y) = ṽ(y).

Since φ(ζ)(x) = φ̃(ζ)(x) for all ζ ∈ [0, s], we have φ(ζ)(x′) = φ̃(ζ)(x′).
Moreover, φ̃(ζ) = φ(ζ) on {x, µ} and φ(ζ) = v = ṽ = φ̃(ζ) on X \ {x, µ}
imply φ(ζ) = φ̃(ζ) on X ∪MBV (γ) because MBV (γ) = {x, µ}. Since X ⊇
FV (γ) ⊇ FV (θ) ∪ FV (χ) by premise, [[θ]]φ(ζ) = [[θ]]φ̃(ζ) by coincidence for
terms (Lemma5). Moreover, φ(ζ) ⊨ χ iff φ̃(ζ) ⊨ χ by the simultaneous
IH. Thus, φ̃(ζ) ⊨ x′ = θ ∧ χ for all ζ ∈ [0, s]. Moreover, φ̃(ζ)(y) = ṽ(y) for
y ̸∈ {x, µ} by definition of φ̃. If we define ṽ = φ̃(0), and τ̃ = ϵ, and w̃ = φ̃(s),
then (ṽ, τ̃ , w̃) ∈ [[α]]. Finally, w̃ = φ̃(s) = φ(s) = w on X ∪MBV (γ), and
τ = τ̃ , and w̃ ̸= ⊥.
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4. (v, τ, w) ∈ [[?χ]], then τ = ϵ, and w = v, and v ⊨ χ. We define τ̃ = ϵ and
w̃ = ṽ. Since v ⊨ χ and v = ṽ on X ⊇ FV (?χ) = FV (χ), we obtain ṽ ⊨ χ by
the simultaneous IH. Hence, (ṽ, τ̃ , w̃) ∈ [[?χ]]. Moreover, w = v = ṽ = w̃ on
X ∪MBV (?χ) because MBV (?χ) = ∅. Finally, τ = τ̃ and w̃ ̸= ⊥.

5. γ ≡ ch(h)!θ and (v, τ, w) ∈ [[γ]], then (τ, w) ⪯ (⟨h, ch, [[θ]]v, v(µ)⟩, v). We
define τ̃ = τ , and w̃ = ⊥ if w = ⊥ and w̃ = ṽ otherwise. Since v = ṽ
on X ⊇ FV (γ) = {h, µ} ∪ FV (θ), we have [[θ]]v = [[θ]]ṽ and v(µ) = ṽ(µ).
Hence, (τ̃ , w̃) ⪯ (⟨h, ch, [[θ]]ṽ, ṽ(µ)⟩, ṽ), which implies (ṽ, τ̃ , w̃) ∈ [[γ]]. Finally,
if w ̸= ⊥, then w = w̃ on X ∪MBV (γ) = X ∪ {h} because w = v = ṽ = w̃
on X since v = ṽ on X ⊆ FV (γ) ⊇ {h}. Moreover, τ = τ̃ and (w = ⊥ iff
w̃ = ⊥).

6. (v, τ, w) ∈ [[ch(h)?x]], then (v, τ, w) ∈ [[α]], where α ≡ x := ∗; ch(h)!x.
Since FV (ch(h)?x) = FV (α), we have v = ṽ on X ⊇ FV (α). Hence, by
IH, (ṽ, τ̃ , w̃) ∈ [[α]] exists with τ = τ̃ and w = w̃ on X ∪MBV () and (w = ⊥
iff w̃ = ⊥) because we considered α to be structurally smaller than ch(h)?x.
Finally, (ṽ, τ̃ , w̃) ∈ [[ch(h)?x]] and observe that MBV (ch(h)?x) =MBV (α).

7. (v, τ, w) ∈ [[α1 ∪ α2]], then (v, τ, w) ∈ [[αj ]] for some j ∈ {1, 2}. Since X ⊇
FV (α1 ∪ α2) ⊇ FV (αj), we have v = ṽ on X ⊇ FV (αj). Thus, (ṽ, τ̃ , w̃) ∈
[[αj ]] ⊆ [[α1 ∪α2]] exists by IH such that w = w̃ on X ∪MBV (αj), and τ = τ̃ ,
and (w = ⊥ iff w̃ = ⊥). Finally, w = w̃ on X ∪ MBV (α1 ∪ α2) because
MBV (α1 ∪ α2) =MBV (α1) ∩MBV (β2).

8. (v, τ, w) ∈ [[α;β]], then (v, τ, w) ∈ [[α]]⊥ or (v, τ, w) ∈ [[α]] ▷ [[β]].
If (v, τ, w) ∈ [[α]]⊥ ⊆ [[α]], a computation (ṽ, τ̃ , w̃) ∈ [[α]] exists by IH such
that τ = τ̃ and w̃ = ⊥. Since w = w̃ = ⊥, we have (ṽ, τ̃ , w̃) ∈ [[α]]⊥ ⊆ [[α;β]]
with w = w̃ on X ∪MBV (α;β), and τ = τ̃ , and (w′ = ⊥ iff w̃ = ⊥).
If (v, τ, w) ∈ [[α]]▷ [[β]], computations (v, τ1, u) ∈ [[α]] and (u, τ2, w) ∈ [[β]] with
τ = τ1 · τ2 exist. Since X ⊇ FV (α;β) ⊇ FV (α), by IH, (ṽ, τ̃1, ũ) ∈ [[α]] exists
with u = ũ on X∪MBV (α), and τ1 = τ̃1, and ũ ̸= ⊥ because u ̸= ⊥. Observe
that X ∪MBV (α) ⊇ FV (α;β) ∪MBV (α) = FV (α) ∪ (FV (β) \MBV (α)) ∪
MBV (α) ⊇ FV (β). Therefore, (ũ, τ̃2, w̃) ∈ [[β]] exists by IH again with w = w̃
on X∪MBV (α)∪MBV (β) = X∪MBV (α;β), τ2 = τ̃2, and (w = ⊥ iff w̃ = ⊥).
Reassembling gives us (ṽ, τ̃ , w̃) ∈ [[α]] ▷ [[β]] ⊆ [[α;β]] with τ̃ = τ̃1 · τ̃2. Finally,
w = w̃ on X ∪MBV (α;β), and τ = τ̃ , and (w = ⊥ iff w̃ = ⊥).

9. (v, τ, w) ∈ [[α∗]], then (v, τ, w) ∈ [[αn]] for some n ∈ N. By induction on n, we
show that (ṽ, τ̃ , w̃) ∈ [[αn]] exists with w = w̃ on X, and τ = τ̃ , and (w = ⊥
iff w̃ = ⊥). Finally, we conclude by [[αn]] ⊆ [[α∗]] and MBV (α∗) = ∅.
(a) n = 0: (v, τ, w) ∈ [[α0]] = [[?T]], then τ = ϵ, and w = ⊥ or w = v.

We define τ̃ = ϵ, and w̃ = ⊥ if w = ⊥ and w̃ = ṽ otherwise. Hence,
(ṽ, τ̃ , w̃) ∈ [[α0]] and w = w̃ on X because if w ̸= ⊥, then v = ṽ on X
implies w = v = ṽ = w̃ on X. Moreover, τ = τ̃ , and (w = ⊥ iff w̃ = ⊥).

(b) n > 0: (v, τ, w) ∈ [[αn]], then (v, τ, w) ∈ [[α;αn−1]] = [[α]]⊥∪([[α]]▷[[αn−1]]).
If (v, τ, w) ∈ [[α]]⊥ ⊆ [[α]], by IH, (ṽ, τ̃ , w̃) ∈ [[α]] exists with τ = τ̃ and
w̃ = ⊥. That is, (ṽ, τ̃ , w̃) ∈ [[α]]⊥ ⊆ [[αn]] with w = w̃ on X since ⊥ = ⊥
on any set of variables, τ = τ̃ , and (w = ⊥ iff w̃ = ⊥).
If (v, τ, w) ∈ [[α]] ▷ [[αn−1]], computations (v, τ1, u) ∈ [[α]] and (u, τ2, w) ∈
[[αn−1]] exist with τ = τ1 · τ2. Since X ⊇ FV (α∗) = FV (α), by IH,
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(ṽ, τ̃1, ũ) ∈ [[α]] exists with u = ũ on X, and τ1 = τ̃1, and ũ ̸= ⊥. Since
X ⊇ FV (α∗) = FV (αn−1) and αn−1 is structurally smaller than α∗, by
IH again, (ũ, τ̃2, w̃) ∈ [[αn−1]] with w = w̃ on X, and τ2 = τ̃2, and (w = ⊥
iff w̃ = ⊥). Reassembling gives us (ṽ, τ̃ , w̃) ∈ [[α]] ▷ [[αn−1]] ⊆ [[αn]] with
τ̃ = τ̃1 · τ̃2. Finally, w = w̃ on X, and τ = τ̃ , and (w = ⊥ iff w̃ = ⊥).

10. (v, τ, w) ∈ [[α1 ∥ α2]], then (v, τ ↓ αj , wαj ) ∈ [[α]] exists for j = 1, 2 such that
wα1

(µ) = wα2
(µ), and τ = τ ↓ (α1 ∥ α2) and w = wα1

⊕ wα2
. Since X ⊇

FV (α1 ∥ α2) ⊇ FV (αj), by IH, (ṽ, τ̃αj
, w̃αj

) ∈ [[αj ]] exists with wαj
= w̃αj

on X ∪MBV (αj), and τ ↓ α = τ̃αj
, and (wαj

= ⊥ iff w̃αj
= ⊥). We define

τ̃ = τ . Thus, τ̃ ↓αj = τ̃αj
, and τ̃ = τ̃ ↓(α1 ∥ α2). Moreover, w̃α1

(µ) = w̃α2
(µ)

either because w̃α1 = ṽ = w̃α2 on µ by Lemma4 if µ is not bound in both
programs, or because µ ∈ X since µ ∈ BV (α1 ∥ α2) implies µ ∈ FV (α1 ∥ α2)
such that w̃α1

= wα1
= wα2

= w̃α2
on µ. In summary, (ṽ, τ̃ , w̃) ∈ [[α1 ∥ α2]],

where w̃ = w̃α1
⊕ w̃α2

, such that τ = τ̃ , and (w = ⊥ iff w̃ = ⊥).

Finally, we show w = w̃ on X ∪MBV (α1 ∥ α2). Let z ∈ X ∪MBV (α1 ∥ α2) =
X ∪MBV (α1)∪MBV (α2). If z ∈ BV (α1), then z ∈ X ∪MBV (α1)∪ {µ} ∪ VT
because V (α2) ∩ BV (α1) ⊆ {µ} ∪ VT (well-formedness) and MBV (α2) ⊆
V (α2). Moreover, BV (α1) ∩ ({µ} ∪ VT ) ⊆ MBV (α1). Now, w(z) = wα1

(z) =
w̃α1

(z) = w̃(z) since wα1
= w̃α1

on X ∪MBV (α), and moreover, w = wα1

on BV (α1) and w̃ = w̃α1 on BV (α1) by the definition of ⊕ in Section 2.2.
If z ̸∈ BV (α1), then z ∈ X ∪MBV (α2). We conclude by w(z) = wα1(z) =
w̃α2

(z) = w̃(z) because w = wα2
on BV (α1)

∁ and w̃ = w̃α2
on BV (α1)

∁ by
the definition of ⊕ again, and wα2

= w̃α2
on X ∪MBV (α2). ⊓⊔

C Details of the Calculus

Reasoning on trace-terms is by simple algebraic laws (see Fig. 15). Their sound-
ness should be clear from the semantics of terms (see Def. 9).

· ↓ (te1 · te2) ↓ C = te1 ↓ C · te2 ↓ C
↓∈ ⟨ch, θ1, θ2⟩ ↓ C = ⟨ch, θ1, θ2⟩ (ch ∈ C)

↓∩ (te ↓ C′) ↓ C = te ↓ (C′ ∩ C)

val= |te| = ie→ val((te · te0)[ie]) = θ1

time= |te| = ie→ time((te · te0)[ie]) = θ2

chan= |te| = ie→ chan((te · te0)[ie]) = ch

·A (te1 · te2) · te3 = te1 · (te2 · te3)
·N te · ϵ = te = ϵ · te
ϵ↓ ϵ ↓ C = ϵ

↓̸∈ ⟨ch, θ1, θ2⟩ ↓ C = ϵ (ch ̸∈ C)

|·|≥0 |te| ≥ 0

|·|+1 |te · te0| = |te|+ 1

val> |te| > ie→ val((te · te0)[ie]) = val(te[ie])

time> |te| > ie→ time((te · te0)[ie]) = time(te[ie])

chan> |te| > ie→ chan((te · te0)[ie]) = chan(te[ie])

Fig. 15: Algebra of traces [42], where te0 ≡ ⟨ch, θ1, θ2⟩.
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In preparation for the soundness proof (see Theorem1), Lemma8 shows that
A and C do not depend on the state of α if [α]{A,C}ψ is well-formed. Moreover,
Lemma9 exploits Def. 7 showing that a program β not interfering with [α]{A,C}ψ
has no influence on the validity of A, C, and ψ in the parallel composition [α ∥
β]{A,C}ψ.

Lemma 8. Let [α]{A,C}ψ be well-formed and (v, τ, w) ∈ [[α]] with w ̸= ⊥. Then
v = w on FV (A) ∪ FV (C). Moreover, v · τ̃ ⊨ χ iff w · τ̃ ⊨ χ for χ ∈ {A,C} and
arbitrary τ̃ ∈ Trec.

Proof. By the bound effect property (Lemma4), v = w on BV (α)∁ ∪ VT . Since
[α]{A,C}ψ is well-formed, we have (FV (A)∪FV (C))∩BV (α) ⊆ VT , which implies
v = w on FV (A) ∪ FV (C). By coincidence (Lemma6), v · τ̃ ⊨ χ iff w · τ̃ ⊨ χ. ⊓⊔

Lemma 9 (Noninterference prevents invalidation). Let β ∈ CHP(V,Ω)
be a program, which does not interfere with [α]{A,C}ψ (Def. 7). Moreover, let
(v, τ, w) ∈ [[α ∥ β]], i.e., among others (v, τ ↓α,wα) ∈ [[α]] and (v, τ ↓β,wβ) ∈ [[β]]
with w = wα ⊕ wβ. Then for χ ∈ {A,C}, the following holds:

1. v · (τ ↓ α) ⊨ χ iff v · τ ⊨ χ
2. w ̸= ⊥ implies

(
wα · (τ ↓ α) ⊨ ψ iff w · τ ⊨ ψ

)
Proof. First, we show (τ ↓α)↓λ = τ ↓λ for λ ∈ {A,C, ψ}, i.e., that λ only depends
on τ ↓α. This holds if only a communication event ρ ∈ {⟨ch, a, s⟩, ⟨h, ch, a, s⟩} in
τ , which is not removed by ↓λ is also not removed by ↓α. So let ρ ↓ λ = ρ. Then
ch ∈ CN(λ). If ch ̸∈ CN(β), then ch ∈ CN(α) because ch ∈ CN(α)∪CN(β) as ρ is
emitted by α ∥ β. Otherwise, if ch ∈ CN(β), then ch ∈ CN(α) by noninterference
(Def. 7). Hence, ch ∈ CN(α) such that ρ is not removed by ↓α.

Since (τ ↓ α) ↓ χ = τ ↓ χ, we have(
v · (τ ↓ α)

)
↓ χ = (v ↓ χ) ·

(
(τ ↓ α) ↓ χ

)
= (v ↓ χ) · (τ ↓ χ) = (v · τ) ↓ χ (5)

on V ⊇ FV (χ). Now, item 1 follows by coincidence (Lemma6).
For item 2, assume w ̸= ⊥. Then wα ̸= ⊥ and wβ ̸= ⊥ by the definition of ⊕

in Section 2.2. First, observe that wα = w on BV (α) by the definition of ⊕, thus
wα = w on BV (α)∩BV (β)∁. Second, wα = v on BV (α)∁∪VT by the bound effect
property (Lemma4), v = wβ on BV (β)∁ ∪ VT also by the bound effect property,

and wβ = w on BV (α)∁ by the definition of ⊕. Chaining the equalities of the
last sentence gives us wα = w on

(BV (α)∁ ∪ VT ) ∩ (BV (β)∁ ∪ VT ) ∩BV (α)∁ ⊇ BV (α)∁ ∩BV (β)∁.

Third, wα = v = wβ on VT by the bound effect property such that wα =
wα ⊕ wβ = w on VT . Summarizing, where wα equals w, we obtain wα = w on

(BV (α) ∩BV (β)∁) ∪ (BV (α)∁ ∩BV (β)∁) ∪ VT = BV (β)∁ ∪ VT .

Thus, wα = w on FV (ψ) because β does not interfere with [α]{A,C}ψ (Def. 7),

which implies FV (ψ) ⊆ BV (β)∁ ∪VT . Therefore, (wα · (τ ↓α)) ↓χ = (w · τ) ↓χ on
FV (ψ) since (wα · (τ ↓ α)) ↓ χ = (wα · τ) ↓ χ holds analogously to equation (5).
Finally, item 2 holds by coincidence. ⊓⊔
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Proposition 3. The parallel operator ∥ is associative and commutative.

Proof (Proposition 3). We prove that the parallel operator ∥ is associative and
commutative:

1. Let αβ be short for α ∥ β. Now, (v, τ, w) ∈ [[α ∥ βγ]] iff (v, τ ↓π,wπ) ∈ [[π]] for
π ∈ {α, βγ}, and wα(µ) = wβγ(µ), and τ ↓ (α ∥ βγ) = τ , and w = wα⊕wβγ .
Moreover, (v, τ ↓ βγ,wβγ) ∈ [[βγ]] iff (v, τ ↓ π,wπ) ∈ [[π]] since (τ ↓ βγ) ↓ π =
τ ↓ π for π ∈ {β, γ}, and (τ ↓ βγ) ↓ βγ = τ ↓ βγ, and wβ(µ) = wγ(µ), and
wβγ = wβ ⊕ wγ .

Likewise, (v, τ, w) ∈ [[αβ ∥ γ]] iff (v, τ ↓ π,wπ) ∈ [[π]] for π ∈ {α, β, γ},
and wαβ(µ) = wγ(µ), and wα(µ) = wβ(µ), and τ ↓ (αβ ∥ γ) = τ , and
(τ ↓ αβ) ↓ αβ = τ ↓ αβ, and w = wαβ ⊕ wγ , and wαβ = wα ⊕ wβ .

Both decompositions can be reassembled into the other one because τ ↓ C
is chronological for any C as τ is chronological. Moreover, all wπ(µ) with
π ∈ {α, β, γ} equate since wβγ(µ) = wβ(µ) and wαβ(µ) = wα(µ). Finally,
wα ⊕ (wβ ⊕ wγ) = (wα ⊕ wβ)⊕ wγ :

If wπ = ⊥ for some π ∈ {α, β, γ}, then both sides equal ⊥. Otherwise, if
wπ ̸= ⊥ for all π ∈ {α, β, γ}, the equation holds because each variable is
written by at most one of α, β, or γ.

2. Let (v, τ, w) ∈ [[α ∥ β]]. Then (v, τ ↓ α,wα) ∈ [[α]], and (v, τ ↓ β,wβ) ∈ [[β]],
and τ ↓ (α ∥ β) = τ , and wα(µ) = wβ(µ), and w = wα ⊕ wβ . First, τ ↓ (α ∥
β) = τ ↓ (β ∥ α) since CN(α ∥ β) = CN(α) ∪ CN(β). By the bound effect
property (Lemma4), wα⊕wβ = v = wβ⊕wα on (BV (α)∪BV (β))∁. Moreover,

wα ⊕ wβ = wα = wβ ⊕ wα on BV (α) since BV (α) ⊆ BV (β)∁ because α and
β do not share state. Accordingly, wα ⊕ wβ = wβ ⊕ wα on BV (β) such that
overall wα ⊕ wβ = wβ ⊕ wα. Finally, (v, τ, w) ∈ [[β ∥ α]]. ⊓⊔

Proof (Theorem1). We prove soundness of the novel ac-axioms and rules. Since
dLCHP is a conservative extension of dL (Proposition 1), we can soundly use the
dL proof calculus for reasoning about dLCHP formulas. Hence, we point to the
literature for soundness of the axioms and rules adopted from dL [30, 33,34].

[ϵ]AC: Let v ⊨ [α]{A,C}ψ. Then v ⊨ C by axiom W[]AC. Now, let (v, τ, w) ∈ [[α]],
and assume w ̸= ⊥ and v ⊨ A. Then τ = ϵ because CN(α) = ∅. Therefore, the
precondition {v · τ ′ | τ ′ ⪯ τ} ⊨ A of (post) is fulfilled, and we conclude w ⊨ ψ.
Conversely, let v ⊨ C ∧ (A → [α]ψ) and (v, τ, w) ∈ [[α]]. Condition (commit)
holds since τ = ϵ and v ⊨ C by precondition. For (post), assume w ̸= ⊥ and
{v · τ ′ | τ ′ ⪯ τ} ⊨ A, which contains v ⊨ A. Then v ⊨ A → [α]ψ implies w ⊨ ψ.

W[]AC: Let v ⊨ [α]{A,C}ψ. Then v ⊨ C by (commit) since (v, ϵ,⊥) ∈ [[α]] by totality
(Proposition 2) and {v · τ ′ | τ ′ ≺ ϵ} ⊨ A trivially holds as {v · τ ′ | τ ′ ≺ ϵ} = ∅.
For [α]{A,C}(C ∧ (A → ψ)), (commit) holds by assumption. For (post), let
(v, τ, w) ∈ [[α]], and assume w ̸= ⊥ and {v · τ ′ | τ ′ ⪯ τ} ⊨ A. By (commit),
v · τ ⊨ C such that w · τ ⊨ C by Lemma8. From (post), we obtain w · τ ⊨ ψ,
which implies w · τ ⊨ A → ψ. The converse direction derives by rule M[·]AC.
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[]K: Let v ⊨ Cl∀K, where K ≡ (A ∧ C1 → A2) ∧ (A ∧ C2 → A1) and Cl∀K denotes
the universal closure of K. Moreover, let v ⊨ Φ for Φ ≡ [α]{A1∧A2,C1∧C2}ψ
and (v, τ, w) ∈ [[α]]. By induction on the length of τ , we simultaneously prove
v ⊨ [α]{A,C1∧C2}ψ, and {v · τ ′ | τ ′ ≺ τ} ⊨ A implies {v · τ ′ | τ ′ ≺ τ} ⊨ A1 ∧ A2:

1. |τ | = 0, then v ⊨ Φ implies v ⊨ C1 ∧ C2 by axiom W[]AC. Hence, (commit)
holds since τ = ϵ. For (post), assume w ̸= ⊥ and {v · τ ′ | τ ′ ⪯ τ} ⊨ A.
Then {v · τ ′ | τ ′ ⪯ τ} ⊨ A1 ∧ A2 since v ⊨ C1 ∧ C2 holds, K is valid, and
τ = ϵ. Thus, w · τ ⊨ ψ by assumption. Note that {v · τ ′ | τ ′ ≺ τ} ⊨ A1 ∧A2

is trivially fulfilled since {v · τ ′ | τ ′ ≺ τ} = ∅.

2. |τ | > 0, then τ = τ0 ·ρ with |ρ| = 1. For (commit), assume {v ·τ ′ | τ ′ ≺ τ} ⊨
A. Then {v · τ ′ | τ ′ ⪯ τ0} ⊨ A, which implies {v · τ ′ | τ ′ ≺ τ0} ⊨ A1 ∧A2 by
IH. Since (v, τ0,⊥) ∈ [[α]] by prefix-closedness (Proposition 2), we obtain
v · τ0 ⊨ C1 ∧C2 by v ⊨ Φ. Hence, v · τ0 ⊨ A1 ∧A2 as K is valid and v · τ0 ⊨ A
such that {v · τ ′ | τ ′ ≺ τ} ⊨ A1∧A2. Finally, v · τ ⊨ C1∧C2 by v ⊨ Φ again.

For (post), assume w ̸= ⊥ and {v · τ ′ | τ ′ ⪯ τ} ⊨ A. Then {v · τ ′ | τ ′ ≺
τ} ⊨ A, which implies {v · τ ′ | τ ′ ≺ τ} ⊨ A1 ∧ A2 and v · τ ⊨ C1 ∧ C2 as in
case (commit). By validity of K and v · τ ⊨ A, we obtain v · τ ⊨ A1 ∧ A2.
In summary, {v · τ ′ | τ ′ ⪯ τ} ⊨ A1 ∧ A2, which implies w · τ ⊨ ψ by v ⊨ Φ.

[;]AC Let v ⊨ [α;β]{A,C}ψ. To show v ⊨ [α]{A,C}[β]{A,C}ψ, let (v, τ1, u) ∈ [[α]].
For (commit), assume {v · τ ′ | τ ′ ≺ τ1} ⊨ A and observe that (v, τ1,⊥) ∈
[[α]]⊥ ⊆ [[α;β]]. Then v · τ1 ⊨ C by assumption. For (post), assume u ̸= ⊥ and
{v · τ ′ | τ ′ ⪯ τ1} ⊨ A. To show u · τ1 ⊨ [β]{A,C}ψ, let (u, τ2, w) ∈ [[β]].

1. For (commit), assume {u·τ1 ·τ ′ | τ ′ ≺ τ2} ⊨ A. Then {v·τ1 ·τ ′ | τ ′ ≺ τ2} ⊨ A
by Lemma8, which implies {v · τ ′ | τ ′ ≺ τ1 · τ2} ⊨ A by assumption {v · τ ′ |
τ ′ ⪯ τ1} ⊨ A. Then v · τ1 · τ2 ⊨ C because (v, τ1 · τ2, w) ∈ [[α]] ▷ [[β]] ⊆ [[α;β]].
Finally, u · τ1 · τ2 ⊨ C, using Lemma8 again.

2. For (post), assume w ̸= ⊥ and {u · τ1 · τ ′ | τ ′ ⪯ τ2} ⊨ A. Then {v · τ ′ |
τ ′ ⪯ τ1 · τ2} ⊨ A by Lemma8. Since (v, τ1 · τ2, w) ∈ [[α;β]], we obtain
w · τ1 · τ2 ⊨ ψ by assumption.

Conversely, let v ⊨ [α]{A,C}[β]{A,C}ψ and (v, τ, w) ∈ [[α;β]]. If (v, τ, w) ∈ [[α]]⊥,
(commit) holds by the assumption. Since w = ⊥, (post) holds trivially. Other-
wise, if (v, τ, w) ∈ [[α]] ▷ [[β]], computations (v, τ1, u) ∈ [[α]] and (u, τ2, w) ∈ [[β]]
with τ = τ1 · τ2 exist. Now, we conclude as follows:

1. For (commit), assume {v · τ ′ | τ ′ ≺ τ} ⊨ A. If τ2 = ϵ, (commit) by the
assumption because (v, τ,⊥) ∈ [[α]]⊥. If τ2 ̸= ϵ, then {v · τ ′ | τ ′ ⪯ τ1} ⊨ A.
Hence, u · τ1 ⊨ [β]{A,C}ψ by (post). By Lemma8, {u · τ ′ | τ ′ ≺ τ1 · τ2} ⊨ A
which implies {u ·τ1 ·τ ′ | τ ′ ≺ τ2} ⊨ A. By u·τ1 ⊨ [β]{A,C}ψ and (u, τ2, w) ∈
[[β]], we obtain u · τ1 · τ2 ⊨ C. Using Lemma8 again, v · τ1 · τ2 ⊨ C.

2. For (post), assume {v · τ ′ | τ ′ ⪯ τ} ⊨ A and w ̸= ⊥. Then u · τ1 ⊨ [β]{A,C}ψ
as above. Finally, w · τ ⊨ ψ because {u · τ1 · τ ′ | τ ′ ⪯ τ2} ⊨ A by Lemma8.

[∪]AC: The axiom follows directly from the semantics [[α ∪ β]] = [[α]] ∪ [[β]] of
choice.
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[∗]AC Since [[α∗]] =
⋃
n∈N[[α

n]], the formula [α∗]{A,C}ψ ↔ [α0]{A,C}ψ∧[α;α∗]{A,C}ψ
is valid. Axiom [∗]AC follows from the formula by axiom [;]AC.

IAC: Let v ⊨ [α∗]{A,C}ψ. Then v ⊨ [α0]{A,C}ψ ∧ [α;α∗]{A,C}ψ by axioms [∗]AC and
[;]AC. Since [[α;α

∗]] = [[α∗;α]] by induction and Lemma3, v ⊨ [α∗]{A,C}[α]{A,C}ψ
by axiom [;]AC. Finally, v ⊨ [α∗]{A,T}(ψ → [α]{A,C}ψ) by rule M[·]AC.
Conversely, let v ⊨ [α0]{A,C}ψ ∧ [α∗]{A,T}(ψ → [α]{A,C}ψ) and (v, τ, w) ∈ [[α∗]].
Since (v, τ, w) ∈ [[αn]] for some n ∈ N, we proceed by induction on n:
1. n = 0, then (commit) holds by v ⊨ [α0]{A,C}ψ and axiom W[]AC since
τ = ϵ. For (post), additionally assume w ̸= ⊥ and observe that v = w
since α0 ≡ ?T such that w ⊨ ψ.

2. n > 0, then (v, τ, w) ∈ [[αn]] = [[α;αn−1]], which, by Lemma3, equals
[[αn−1;α]] = [[αn−1]]⊥ ∪ [[αn−1]] ▷ [[α]]. In case [[αn−1]]⊥ ⊆ [[αn−1]], (commit)
and (post) hold by IH. Otherwise, if (v, τ, w) ∈ [[αn−1]]▷ [[α]], computations
(v, τ1, u) ∈ [[αn−1]] and (u, τ2, w) ∈ [[α]] exist with τ = τ1 · τ2.
(a) If τ2 = ϵ, (commit) holds by IH since (v, τ,⊥) ∈ [[αn−1]]. If τ2 ̸= ϵ,

assume {v · τ ′ | τ ′ ≺ τ} ⊨ A, which implies {v · τ ′ | τ ′ ⪯ τ1} ⊨ A.
Thus, u · τ1 ⊨ ψ → [α]{A,C}ψ by assumption. Since u · τ1 ⊨ ψ by IH
and (post), we obtain u · τ1 ⊨ [α]{A,C}ψ. By Lemma8 and assumption
{v · τ ′ | τ ′ ≺ τ} ⊨ A, we obtain {u · τ1 · τ ′ | τ ′ ≺ τ2} ⊨ A. Thus,
u · τ1 · τ2 ⊨ C, which implies v · τ ⊨ C by Lemma8 again.

(b) For (post), let w ̸= ⊥ and {v · τ ′ | τ ′ ⪯ τ} ⊨ A. Then {v · τ ′ | τ ′ ⪯
τ1} ⊨ A and {v · τ1 · τ ′ | τ ′ ⪯ τ2} ⊨ A. As in case (commit), we obtain
u · τ1 ⊨ [α]{A,C}ψ. Now, Lemma8 implies {u · τ1 · τ ′ | τ ′ ⪯ τ2} ⊨ A such
that w · τ ⊨ ψ.

[∥ ]AC: Let v ⊨ [α]{A,C}ψ and (v, τ, w) ∈ [[α ∥ β]]. Then (v, τ ↓ α,wα) ∈ [[α]] with
w = wα⊕wβ for some wβ ∈ S⊥. For (commit), assume {v · τ ′ | τ ′ ≺ τ} ⊨ A. If
τ ′α ≺ τ ↓ α, then τ ′ ≺ τ exists such that τ ′α = τ ′ ↓ α. Thus, (v, τ ′,⊥) ∈ [[α ∥ β]]
and (v, τ ′α,⊥) ∈ [[α]] by prefix-closedness (Proposition 2). Hence, {v · τ ′ | τ ′ ≺
τ ↓ α} ⊨ A by Lemma9 since β does not interfere with [α]{A,C}ψ. Therefore,
v · (τ ↓α) ⊨ C by v ⊨ [α]{A,C}ψ. Now, we obtain v · τ ⊨ C using Lemma9 again.
For (post), assume w ̸= ⊥ and {v · τ ′ | τ ′ ⪯ τ} ⊨ A. Then wα ̸= ⊥ by the
definition of ⊕ in Section 2.2 and {v ·τ ′ | τ ′ ⪯ τ ↓α} ⊨ A by Lemma9 as above.
Hence, wα · (τ ↓ α) ⊨ ψ by v ⊨ [α]{A,C}ψ. Finally, w · τ ⊨ ψ by Lemma9.

[]⊤,⊤: Let v ⊨ [α]ψ and (v, τ, w) ∈ [[α]]. Then (commit) holds trivially. For
(post), assume w ̸= ⊥ and {v · τ ′ | τ ′ ⪯ τ} ⊨ T. Then w · τ ⊨ ψ by assumption.
Conversely, let v ⊨ [α]{T,T}ψ and (v, τ, w) ∈ [[α]] with w ̸= ⊥. Then w · τ ⊨ ψ
holds by (post) since {v · τ ′ | τ ′ ⪯ τ} ⊨ T holds trivially.

[]AC∧: The implication [α]{A,C1}ψ1 ∧ [α]{A,C2}ψ2 → [α]{A,C1∧C2}(ψ1 ∧ ψ2) can
be easily shown by the semantics. The converse impliciation derives by rule
M[·]AC.

[ch!]AC: Let v ⊨ [ch(h)!θ]{A,C}ψ. Then v ⊨ C by W[]AC. Now, assume v ⊨ A
and let (v, τ, w) ∈ [[ch(h)!θ]] with w ̸= ⊥. Since v ⊨ A and |τ | = 1, we have
{v · τ ′ | τ ′ ≺ τ} ⊨ A. Thus, v · τ ⊨ C by (commit), which implies w · τ ⊨ C by
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Lemma8. For A → ψ, assume w · τ ⊨ A. Then v · τ ⊨ A by Lemma8 such that
{v · τ ′ | τ ′ ⪯ τ} ⊨ A. Hence, w · τ ⊨ ψ by (post).
Conversely, let v ⊨ Φ([ch(h)!θ]Φ(ψ)), where Φ(ϕ) ≡ C∧(A → ϕ) and (v, τ, w) ∈
[[ch(h)!θ]]. For (commit), assume {v · τ ′ | τ ′ ≺ τ} ⊨ A. If τ = ϵ, we obtain
v ⊨ C by assumption. If τ ̸= ϵ, then v ⊨ A such that v ⊨ [ch(h)!θ]Φ(ψ).
W.l.o.g. w ̸= ⊥ since ch(h)!θ has a terminating computation from any v.
Hence, w · τ ⊨ Φ(ψ) such that w · τ ⊨ C. By Lemma8, we obtain v · τ ⊨ C. For
(post), assume w ̸= ⊥ and {v · τ ′ | τ ′ ⪯ τ} ⊨ A. As above w · τ ⊨ Φ(ψ) such
that w · τ ⊨ A → ψ. Since v · τ ⊨ A by assumption, which implies w · τ ⊨ A by
Lemma8, we obtain w · τ ⊨ ψ.

[ch!]: Let v ⊨ ∀h0 (h0 = h · ⟨ch, θ, µ⟩ → ψ(h0)) and (v, τ, w) ∈ [[ch(h)!θ]] with
w ̸= ⊥. Instantiating ∀h0 with τ0 = [[h · ⟨ch, θ, µ⟩]]v to u = vτ0h0

, we have

u ⊨ h0 = h · ⟨ch, θ, µ⟩. Therefore, u ⊨ ψ(h0). By substitution, u
[[h0]]u
h ⊨ ψ(h).

Since h0 ̸∈ FV (θ), we have [[h · ⟨ch, θ, µ⟩]]u = [[h · ⟨ch, θ, µ⟩]]v by coincidence

(Lemma6). Moreover, [[h0]]u = [[h · ⟨ch, θ, µ⟩]]u such that u
[[h·⟨ch,θ,µ⟩]]v
h ⊨ ψ(h),

which implies v
[[h·⟨ch,θ,µ⟩]]v
h ⊨ ψ(h) by coincidence because h0 ̸∈ FV (ψ(h)).

Now, observe that τ = ⟨h, ch, [[θ]]v, v(µ)⟩ such that v ·τ = v
[[h·⟨ch,θ,µ⟩]]v
h . Finally,

w · τ ⊨ ψ(h) because w = v.
Conversly, let v ⊨ [ch(h)!θ]ψ(h). To prove the quantifier let τ0 ∈ T and assume
vτ0h0

⊨ h0 = h · ⟨ch, θ, µ⟩. Now, observe that (v, τ, v) ∈ [[ch(h)!θ]] with τ =

⟨h, ch, [[θ]]v, v(µ)⟩ such that v · τ ⊨ ψ(h). Since v · τ = v
[[h·⟨ch,θ,µ⟩]]v
h and [[h ·

⟨ch, θ, µ⟩]]v = [[h0]]v = τ0, we obtain vτ0h0
⊨ ψ(h0) by substitution.

[ch?]AC: First, observe that [[ch(h)?x]] = [[x := ∗]] ▷ [[ch(h)!x]].
Now, let v ⊨ [ch(h)?x]{A,C}ψ and w.l.o.g. (v, ϵ, u) ∈ [[x := ∗]] with u ̸= ⊥.
Futher, let (u, τ, w) ∈ [[ch(h)!x]]. Then (v, τ, w) ∈ [[x := ∗]] ▷ [[ch(h)!x]] =
[[ch(h)?x]]. For (commit), assume {u · τ ′ | τ ′ ≺ τ} ⊨ A. Since [ch(h)?x]{A,C}ψ
is well-formed, we have (FV (A) ∪ FV (C)) ∩ BV (ch(h)?x) ⊆ VT . Since x ∈
BV (ch(h)?x) and BV (x := ∗) = {x}, we have v = u on FV (A) ∪ FV (C). By
coincide (Lemma6), we obtain {v · τ ′ | τ ′ ≺ τ} ⊨ A such that v · τ ⊨ C by
premise, which implies u · τ ⊨ C by coincidence again. For (post), assume
w ̸= ⊥ and {u · τ ′ | τ ′ ⪯ τ} ⊨ A. Then {v · τ ′ | τ ′ ⪯ τ} ⊨ A as above. By
premise, w · τ ⊨ ψ.
Conversely, let v ⊨ [x := ∗][ch(h)!x]{A,C}ψ and (v, τ, w) ∈ [[ch(h)?x]]. Then
(v, ϵ, u) ∈ [[x := ∗]] and (u, τ, w) ∈ [[ch(h)!x]] exist. By premise, we obtain
u ⊨ ϕ, where ϕ ≡ [ch(h)!x]{A,C}ψ. Now, we have to prove v ⊨ [ch(h)?x]{A,C}ψ.
Therfore, assume {v · τ ′ | τ ′ ≺ τ} ⊨ A for (commit). As in the converse
direction, {u · τ ′ | τ ′ ≺ τ} ⊨ A sucht that u · τ ⊨ C by u ⊨ ϕ, which again
implies v · τ ⊨ C. For (post), assume w ̸= ⊥ and {v · τ ′ | τ ′ ⪯ τ}. Finally,
w · τ ⊨ ψ by u ⊨ ϕ.

M[·]AC: Let v ⊨ [α]{A1,C1}ψ and (v, τ, w) ∈ [[α]]. For (commit), assume {v · τ ′ |
τ ′ ≺ τ} ⊨ A2. Then {v · τ ′ | τ ′ ≺ τ} ⊨ A1, which implies v · τ ⊨ C1 by
assumption. Finally, v ·τ ⊨ C2 by premise C1 → C2. For (post), assume w ̸= ⊥
and {v · τ ′ | τ ′ ⪯ τ} ⊨ A2. Then {v · τ ′ | τ ′ ⪯ τ} ⊨ A1 by premise A2 → A1.
Thus, w · τ ⊨ ψ1 by assumption. Finally, w · τ ⊨ ψ2 by premise ψ1 → ψ2.
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GAC: Let the premise C ∧ ψ be valid. To prove validity of [α]{A,C}ψ, let v be an
arbitrary state and (v, τ, w) ∈ [[α]]. Condition (commit) holds since v · τ ⊨ C
by validity of C. For (post), assume w ̸= ⊥. Then w · τ ⊨ ψ since ψ is valid.

[µ]: Let ode ≡ {x′ = θ & χ}. Now, (v, τ, w) ∈ [[{µ′ = 1, ode}]] iff a solution
φ : [0, s] → S from v to w exists such that φ(ζ) ⊨ µ′ = 1 ∧ µ′ = 1 ∧ x′ = θ
and v = φ(ζ) on {x, µ}∁ for ζ ∈ [0, s] iff, since µ′ = 1 ∧ µ′ = 1 ↔ µ′ = 1 at all
φ(ζ), we have (v, τ, w) ∈ [[ode]]. Thus, v ⊨ [{µ′ = 1, ode}]ψ iff v ⊨ [ode]ψ. ⊓⊔

Corollary 1. The axioms and rules in Fig. 5 derive syntactically. Additionally,
we derive the following rule invAC in preparation of the proof of rule indAC:

I ⊢ [α]{A,C}ψ
invAC

I ⊢ [α∗]{A,C}ψ

Proof (Corollary 1). We prove the axioms and rules by derivation in our calculus.
For rule CG, see Fig. 16, for rule [∥ ]ACR, see Fig. 17 for rule invAC, see Fig. 18,
for rule indAC, see Fig. 19, and for rule [!θ]ACR, see Fig. 20. ⊓⊔

∗
=

⊢ h · te = h · te, Φ(h)
∗

Id
Φ(h) ⊢ Φ(h)

→L
h · te = h · te→ Φ(h) ⊢ Φ(h)

∀L
∀h0 (h0 = h · te→ Φ(h0)) ⊢ Φ(h)

[ch!]
[ch(h)!θ]Φ(h) ⊢ Φ(h)

WL, WR
Γ, [ch(h)!θ]Φ(h) ⊢ Φ(h),∆

Γ, h0 = h · te ⊢ Φ(h0),∆
→R

Γ ⊢ h0 = h · te→ Φ(h0),∆
∀R

Γ ⊢ ∀h0 (h0 = h · te→ Φ(h0)),∆
[ch!]

Γ ⊢ [ch(h)!θ]Φ(h),∆
WR

Γ ⊢ [ch(h)!θ]Φ(h), Φ(h),∆
Cut

Γ ⊢ Φ(h),∆

Fig. 16: Derivation of rule CG. In the proof, te abbreviates ⟨ch, θ, µ⟩ and Φ(h)
abbreviates [α(h)]ψ.

⊢ K∀R ⊢ Cl∀K
WL, WR

Γ ⊢ Cl∀K,∆

◁

Γ ⊢ [αj ]{Aj ,Cj}ψj ,∆ (for j = 1, 2)
[∥ ]AC

Γ ⊢ [α1 ∥ α2]{Aj ,Cj}ψj ,∆ (for j = 1, 2)
M[·]AC

Γ ⊢ [α1 ∥ α2]{A1∧A2,Cj}ψj ,∆ (for j = 1, 2)
[]AC∧

Γ ⊢ [α1 ∥ α2]{A1∧A2,C1∧C2}(ψ1 ∧ ψ2),∆
∧R

Γ ⊢ Cl∀K ∧ [α1 ∥ α2]{A1∧A2,C1∧C2}(ψ1 ∧ ψ2),∆
[]K

Γ ⊢ [α1 ∥ α2]{A,C1∧C2}(ψ1 ∧ ψ2),∆

Fig. 17: Derivation of rule [∥ ]ACR. For j = 1, 2, the open premise A1 ∧A2 → Aj
marked by ◁ obviously holds. Axiom [∥ ]AC can be applied since α3−j does not
interfere with [αj ]{Aj ,Cj}ψj by premise.
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∗
Id

I,C, [α]{A,C}I ⊢ C
∧L

I,C ∧ [α]{A,C}I ⊢ C
W[]AC

I, [α]{A,C}I ⊢ C I ⊢ [α]{A,C}I
Cut

I ⊢ C

∗
Id

I,A,T ⊢ I
→R

I,A ⊢ T → I
[?]

I,A ⊢ [α0]I
→R

I ⊢ A → [α0]I

∧R
I ⊢ C ∧ (A → [α0]I)

[ϵ]AC
I ⊢ [α0]{A,C}I

∗
⊢ T

I ⊢ [α]{A,C}I
→R

⊢ I → [α]{A,C}I
∧R

⊢ T ∧ (I → [α]{A,C}I)
GAC

I ⊢ [α∗]{A,T}(I → [α]{A,C}I)
∧R

I ⊢ [α0]{A,C}I ∧ [α∗]{A,T}(I → [α]{A,C}I)
IAC

I ⊢ [α∗]{A,C}I

Fig. 18: Derivation of rule invAC

C, I ⊢ [α]{A,C}I
∧L

IC ⊢ [α]{A,C}I
M[·]AC

IC ⊢ [α]{A,C}IC
invAC

IC ⊢ [α∗]{A,C}IC
→R

Γ ⊢ IC → [α∗]{A,C}IC,∆

Γ ⊢ IC,∆

∗
Id

I,C ⊢ C
∧L

IC ⊢ C

C,A, I ⊢ ψ
∧L

IC,A ⊢ ψ
→R

IC ⊢ A → ψ
∧R

IC ⊢ (C ∧ (A → ψ))
M[·]AC

[α∗]{A,C}IC ⊢ [α∗]{A,C}(C ∧ (A → ψ))
W[]AC

[α∗]{A,C}IC ⊢ [α∗]{A,C}ψ
→L

Γ, IC → [α∗]{A,C}IC ⊢ [α∗]{A,C}ψ,∆
Cut

Γ ⊢ [α∗]{A,C}ψ,∆

Fig. 19: Derivation of rule indAC. In the proof, we silently apply weakening several
times. The formula IC ≡ I ∧ C combines the invariant with the commitment C.
Moreover, Ψ is short for C ∧ (A → ψ).

Γ ⊢ C(h),∆

Γ,A(h), H0 ⊢ C(h0),∆

Γ,A(h), H0,A(h0) ⊢ ψ(h0),∆
→R

Γ,A(h), H0 ⊢ A(h0) → ψ(h0),∆
∧R

Γ,A(h), H0 ⊢ C(h0) ∧ (A(h0) → ψ(h0)),∆
→R

Γ,A(h) ⊢ H0 → (C(h0) ∧ (A(h0) → ψ(h0))),∆
∀R

Γ,A(h) ⊢ ∀h0 (H0 → (C(h0) ∧ (A(h0) → ψ(h0)))),∆
[ch!]

Γ,A(h) ⊢ [ch(h)!θ](C(h) ∧ (A(h) → ψ(h))),∆
→R

Γ ⊢ A(h) → [ch(h)!θ](C(h) ∧ (A(h) → ψ(h))),∆
∧R

Γ ⊢ C(h) ∧ (A(h) → [ch(h)!θ](C(h) ∧ (A(h) → ψ(h)))),∆
[ch!]AC

Γ ⊢ [ch(h)!θ]{A(h),C(h)}ψ(h),∆

Fig. 20: Derivation of rule [!θ]ACR. In the proof, H0 is short for h0 = h · ⟨ch, θ, µ⟩.
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D Details of the Example

We continue the proof of the example from Section 3 and provide the remaining
derivations:

▷Fig. 22

C,L, χvel(v0) ⊢ [plantl(v0)]L(v0, xl, w, µ, h)
↓̸∈

C,L, χvel(v0) ⊢ [plantl(v0)]L(v0, xl, w, µ, h · ⟨vel, v0, µ⟩)
=R

C,L, χvel(v0), hvel = h · ⟨vel, v0, µ⟩
⊢ [plantl(v0)]L(v0, xl, w, µ, hvel)

▷Id ▷Fig. 23

[!θ]ACR
C,L, χvel(v0) ⊢ [vel(h)!v0]{T,C}[plantl(v0)]L(v0, xl, w, µ, h) ▷Fig. 24

[∪]AC
C,L, χvel(v0) ⊢ [vel(h)!v0 ∪ skip]{T,C}[plantl(v0)]L(v0, xl, w, µ, h)

[?], →R
C,L ⊢ [?χvel(v0)][vel(h)!v0 ∪ skip]{T,C}[plantl(v0)]L(v0, xl, w, µ, h)

[:∗], ∀R
C,L ⊢ [vl := ∗][?χvel(vl)][vel(h)!vl ∪ skip]{T,C}[plantl(vl)]L(vl, xl, w, µ, h)

[;]
C,L ⊢ [vl := ∗; ?χvel(vl)][vel(h)!vl ∪ skip]{T,C}[plantl(vl)]L(vl, xl, w, µ, h) ▷Id

∧R
C,L ⊢ C ∧ [vl := ∗; ?χvel(vl)][vel(h)!vl ∪ skip]{T,C}[plantl(vl)]L(vl, xl, w, µ, h)

[ϵ]AC
C,L ⊢ [vl := ∗; ?χvel(vl)]{T,C}[vel(h)!vl ∪ skip]{T,C}[plantl(vl)]L(vl, xl, w, µ, h)

[;]AC
C,L ⊢ [noti(h)]{T,C}[plantl(vl)]L(vl, xl, w, µ, h) ▷Fig. 25

Execution by [;]AC, [∪]AC, [ϵ]AC, W[]AC, and ∧R

C,L ⊢ [(noti(h) ∪ updt(h));plantl(vl)]{T,C}L(vl, xl, w, µ, h) ▷1TA, R ▷2 R
indAC

Γ ⊢ [leader(h)]{T,C}ψl

Fig. 21: Continues the derivation from Fig. 7. With Γ we abbreviate the list
φ, h1 = h0·⟨vel, 0, µ⟩, h = h1·⟨pos, xl, µ⟩ of formulas. The induction uses invariant
L ≡ val(h↓pos) ≤ xl∧vl ≥ 0∧w = ∆(µ, h↓pos) ≤ ϵ. The induction base Γ ⊢ L
(▷1) closes by trace algebra TA and real arithmetic R. Postcondition L ⊢ ψl (▷2)
holds by R.

∗ R
L, χvel(v0), t ≥ 0, w + t ≤ ϵ

⊢ w + t = ∆(µ+ t, h) ≤ ϵ ∧ v0 ≥ 0 ∧ val(h) ≤ xl + t · v0
∀L

L, χvel(v0), t ≥ 0, E ⊢ L(v0, xl + t · v0, w + t, µ+ t, h)
→R, WL

C,L, χvel(v0), t ≥ 0 ⊢ E → L(v0, xl + t · v0, w + t, µ+ t, h)
∀R

C,L, χvel(v0) ⊢ ∀t≥0 (E → L(v0, xl + t · v0, w + t, µ+ t, h))
[′], [:=]

C,L, χvel(v0) ⊢ [{µ′=1, w′=1, x′l=v0 & w ≤ ϵ}]L(v0, xl, w, µ, h)
[µ]

C,L, χvel(v0) ⊢ [plantl(v0)]L(v0, xl, w, µ, h)

Fig. 22: Continues the proofs from Fig. 21 and Fig. 24. Thereby E is short for
∀0≤ t̃≤ t w ≤ t̃ ≤ ϵ.
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∗
Id

C,L, χvel(v0) ⊢ 0≤v0≤V ▷N
val=

C,L, χvel(v0) ⊢ 0≤val(hvel · ⟨out, v0, µ⟩)≤V
=R

C,L, χvel(v0), hvel = h · ⟨out, v0, µ⟩ ⊢ 0≤val(h0)≤V

Fig. 23: Continues the proof from Fig. 21

▷ Fig. 22

C,L, χvel(v0) ⊢ [plantl(v0)]L(v0, xl, w, µ, h) ▷Id
∧R

C,L, χvel(v0) ⊢ C ∧ [plantl(v0)]L(v0, xl, w, µ, h)
→R, WL

C,L, χvel(v0) ⊢ T → C ∧ [plantl(v0)]L(v0, xl, w, µ, h)
[?]

C,L, χvel(v0) ⊢ [skip](C ∧ [plantl(v0)]L(v0, xl, w, µ, h)) ▷Id
∧R

C,L, χvel(v0) ⊢ C ∧ [skip](C ∧ [plantl(v0)]L(v0, xl, w, µ, h))
[ϵ]AC

C,L, χvel(v0) ⊢ [skip]{T,C}[plantl(v0)]L(v0, xl, w, µ, h)

Fig. 24: Continues proof from Fig. 21

∗ R
L, t ≥ 0, w + t ≤ ϵ ⊢ w + t = ∆(µ+ t, hpos) ≤ ϵ ∧ vl ≥ 0 ∧ xl + t · vl ≤ xl ▷N

val=
L, w = 0, t ≥ 0, E ⊢ L(vl, xl + t · vl, w + t, µ+ t, h · ⟨pos, xl, µ⟩)

=R
L, Hpos, w = 0, t ≥ 0, E ⊢ L(vl, xl + t · vl, w + t, µ+ t, hpos)

→R
L, Hpos, w = 0, t ≥ 0 ⊢ E → L(vl, xl + t · vl, w + t, µ+ t, hpos)

∀R
L, Hpos, w = 0 ⊢ ∀t≥0 (E → L(vl, xl + t · vl, w + t, µ+ t, hpos))

[′]
L, Hpos, w = 0,⊢ [{µ′=1, w′=1, x′l=vl & w ≤ 0}]L(vl, xl, w, µ, hpos)

[µ]
L, Hpos, w = 0 ⊢ [plantl]L(vl, xl, w, µ, hpos)

[:=], WL
C,L, Hpos ⊢ [w := 0][plantl]L(vl, xl, w, µ, hpos) ▷Id

[!θ]ACR
C,L ⊢ [pos(h)!xl]{T,C}[w := 0][plantl]L(vl, xl, w, µ, hpos)

[ϵ]AC, W[]AC
C,L ⊢ [pos(h)!xl]{T,C}[w := 0]{T,C}[plantl]L(vl, xl, w, µ, hpos)

[;]AC
C,L ⊢ [updt(h)]{T,C}[plantl]L(vl, xl, w, µ, hpos)

Fig. 25: Continues the proof from Fig. 21. We abbreviate hpos = h · ⟨pos, xl, µ⟩
by Hpos. Thereby E is short for ∀0≤ t̃≤ t w + t̃ ≤ ϵ.

∗ R
F, d ≤ ϵV, t ≥ 0 ⊢ F(xf + t · vf , µ+ t) ▷

WL
F,A, Hvel,A(h0), d ≤ ϵV, t ≥ 0 ⊢ F(xf + t · vf , µ+ t)

∀R
F,A, Hvel,A(h0), d ≤ ϵV ⊢ ∀t≥0F(xf + t · vf , µ+ t)

[′]
F,A, Hvel,A(h0), d ≤ ϵV ⊢ [{µ′=1, x′f=vf}]F(xf , µ)

[µ]
F,A, Hvel,A(h0), d ≤ ϵV ⊢ [{x′f=vf}]F(xf , µ)

Fig. 26: Continues the proof from Fig. 8. Formula Hvel is short for h0 = hvel ·
⟨vel, vtar, µ⟩
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∗ R
F, d0 = m− xf ,m− xf ≤ ϵV, 0≤v0<d0/ϵ, t ≥ 0 ⊢ 0≤v0≤d0/ϵ

∧ v0 ≤ V ∧ xf + t · v0 + (ϵ− (µ+ t− µ))d0/ϵ < m
▷N

↓∈, time=
F, d0 = m− xf ,m− xf ≤ ϵV, 0≤v0<d0/ϵ, t ≥ 0 ⊢ 0≤v0≤d0/ϵ

∧ vf ≤ V ∧ xf + t · v0 + (ϵ−∆(µ+ t, h · ⟨pos,m, µ⟩))d0/ϵ < m
▷N

↓∈, val=
F, d0 = m− xf ,m− xf ≤ ϵV, 0≤v0<d0/ϵ, t ≥ 0

⊢ F(v0, xf + t · vf , d0, µ+ t, h · ⟨pos,m, µ⟩)
=R

Γmes, 0≤v0<d0/ϵ, t ≥ 0 ⊢ F(vf , xf + t · vf , d0, µ+ t, hpos)
∀R

Γmes, 0≤v0<d0/ϵ ⊢ ∀t≥0F(vf , xf + t · vf , d0, µ+ t, hpos,)
[′], [:=]

Γmes, 0≤v0<d0/ϵ ⊢ [{µ′=1, x′f = v0}]F(vf , xf , d0, µ, hpos)
[µ]

Γmes, 0≤v0<d0/ϵ ⊢ [{x′f = v0}]F(vf , xf , d0, µ, hpos)
[?], →R

Γmes ⊢ [?0≤v0<d0/ϵ][plantf (v0)]F(vf , xf , d0, µ, hpos)
[:∗], ∀R

Γmes ⊢ [vf := ∗][?0≤vf <d0/ϵ][plantf ]F(vf , xf , d0, µ, hpos)
[;]

Γmes ⊢ [vf := ∗; ?0≤vf <d0/ϵ][plantf ]F(vf , xf , d0, µ, hpos) ▷ Fig. 28
[if ]

F, Hpos, d0 = m− xf ⊢ [cond(d0)][plantf ]F(vf , xf , d0, µ, hpos)
[:=]

F, Hpos ⊢ [d := m− xf ][cond(d)][plantf ]F(vf , xf , d, µ, hpos)
WL, [;]

F,A(h), Hpos ⊢ [d := m− xf ; cond(d)][plantf ]F(vf , xf , d, µ, hpos) ▷⊤R
[!θ]ACR

F ⊢ [pos(h)!m]{A(h),T}[d := m− xf ; cond(d)][plantf ]F(vf , xf , d, µ, h)
[:∗], ∀R

F ⊢ [m := ∗][pos(h)!m]{A(h),T}[d := m− xf ; cond(d)][plantf ]F(vf , xf , d, µ, h)
[ch?]AC

F ⊢ [pos(h)?m]{A(h),T}[d := m− xf ; cond(d)][plantf ]F(vf , xf , d, µ, h)
[ϵ]AC, W[]AC

F ⊢ [pos(h)?m]{A(h),T}[d := m− xf ; cond(d)]{A(h),T}[plantf ]F(vf , xf , d, µ, h)
[;]AC

F ⊢ [dist(h)]{A(h),T}[plantf ]F

Fig. 27: Continues the proof from Fig. 8. The program cond abbreviates if (d ≤
ϵV ) {vf := ∗; ?0 ≤ vf < d/ϵ}. Formula Hpos is short for hpos = h · ⟨pos,m, µ⟩.
Further, Γmes denotes the formula list F, Hpos, d0 = m− xf , d0 ≤ ϵV .

∗ R
F,m− xf > ϵV, t ≥ 0 ⊢ 0≤vf ≤d0/ϵ ∧ vf ≤ V

∧ xf + t · vf + (ϵ− (µ+ t− µ))d0/ϵ < m
▷N

↓∈, time=
F,m− xf > ϵV, t ≥ 0 ⊢ 0≤vf ≤d0/ϵ ∧ vf ≤ V

∧ xf + t · vf + (ϵ−∆(µ+ t, h · ⟨pos,m, µ⟩))d0/ϵ < m
▷N

↓∈, val=
F,m− xf > ϵV, t ≥ 0 ⊢ F(vf , xf + t · vf , d0, µ+ t, h · ⟨pos,m, µ⟩)

=R
F, Hpos,m− xf > ϵV, t ≥ 0 ⊢ F(vf , xf + t · vf , d0, µ+ t, hpos)

∀R
F, Hpos,m− xf > ϵV ⊢ ∀t≥0F(vf , xf + t · vf ,m− xf , µ+ t, hpos)

[′], [:=]
F, Hpos,m− xf > ϵV ⊢ [µ′=1, x′f=vf ]F(vf , xf ,m− xf , µ, hpos)

[µ]
F, Hpos,m− xf > ϵV ⊢ [plantf ]F(vf , xf ,m− xf , µ, hpos)

=L, =R
F, Hpos, d0 = m− xf , d0 > ϵV ⊢ [plantf ]F(vf , xf , d0, µ, hpos)

Fig. 28: Continues the proof from Fig. 27
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